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[bookmark: _Toc486935798]Assessment methodology used in OSPAR assessment 2016
This document is collected from the help file in the OSPAR web tool (http://dome.ices.dk/OSPARMIME2016/main.html), and describes the steps and statistics behind the assessment results.
The help files are updated every year if changes to the assessments are made (mainly updating the assessment criteria), so when looking at a particular dataset, the associated helpfiles are the relevant description. This document describes the status in 2016 and the dataset used for the IA2017. The statistical methods are stable and have been used for many years, it is mainly small tweaks in the conversion factors (appendix 2) and the changes are documentet from year to year (see appendix 1).
[bookmark: _Toc486935799]Assessment methodology for contaminants in biota
[bookmark: _Toc486935800]Overview for status assessments
For a regional status assessment, the status of each time series is summarised by the difference between the estimated mean log concentration in the final monitoring year and the log assessment concentration. This ensures that status is always measured on the same scale, even though the assessment criterion might vary between metals and time series. Essentially the same linear mixed model as for trends is then fitted:
· response: status (mean log concentration - log assessment concentration)
· fixed model: region * metal
· random model: station + status estimation variation + residual variation
where status estimation variation is the variation in the status estimates from the individual time series analysis, assumed known and fixed.
There are no restrictions on the time series used in the status meta-analysis based on the classification of the monitoring station; time series from baseline, representative and impacted stations are all included. However, the few time series with a non-parametric assessment of status must be excluded, because there is no summary measure of status to use in the mixed model.
Again, the meta-analysis is restricted to regions and metal combinations with at least three status stations with good geographic spread.
The statistics used for status assessments will be further developed during the 2017 MIME meeting.
[bookmark: _Toc486935801]Overview for time series
Time series of contaminant concentrations in biota are assessed in two stages:
The concentrations are log transformed and changes in the log concentrations over time are modelled using linear mixed models. The type of temporal change that is considered depends on the number of years of data:
1-2 years: no model is fitted because there are insufficient data

3-4 years: concentrations are assumed to be stable over time and the mean log concentration is estimated
5-6 years: a linear trend in log concentration is fitted
7+ years: more complex (smooth) patterns of change over time are modelled
The fitted models are used to assess environmental status against available assessment criteria and evidence of temporal change in contaminant levels in the last twenty years
These stages are described in more detail below. Other help files describe how the methodology is adapted when there are ‘less-than’ measurements, i.e. some concentrations are reported as below the detection limit, and missing uncertainties, i.e. the analytical variability associated with some of the concentration measurements was not reported. Changes to the methodology since the 2014 assessment are described in appendix 1.
[bookmark: _Toc486935802]Modelling changes in log concentration over time
The log concentrations are modelled by a linear mixed model of the form:
response: log concentration
fixed: f(year)
random: year + sample + analytical
The fixed effects model describes how log concentrations change over time (year), where the form of f(year) depends on the number of years of data (described in the next paragraph). The random effects model has three components:
year: random variation in log concentration between years. Here, year is treated as a categorical variable
sample: random variation in log concentration between samples within years. When there is only one sample each year, this term is omitted and implicitly subsumed into the between-year variation
analytical: random variation inherent in the chemical measurement process. This is assumed known and derived from the the ‘uncertainties’ reported with the data. Specifically, if ui, i=1...n, are the uncertainties associated with concentrations cici (expressed as the standard deviations of the concentration measurements), then the standard deviations of the log concentration measurements log ci are taken to be ui/ci. Measurements with ui>ci (i.e. an analytical coefficient of variation of more than 100%) are omitted from the time series.
The model is fitted by maximum likelihood assuming each of the random effects are independent and normally distributed (on the log concentration scale)[footnoteRef:2]. [2:  Such models cannot be readily fitted in the R statistical environment becuase the analyticalanalytical variance is assumed know. Instead, the likelihood is maximised directly using the optim function. Ideally, the models should be fitted by restricted maximum likelihood (apart from when being used for likelihood ratio tests), but this has not been implemented yet.] 

The form of f(year) depends on the number of years of data:

1-2 years
no model is fitted as there are too few years for formal statistical analysis
3-4 years
mean model f(year)=μ
there are too few years for a formal trend assessment, but the mean level is summarised by μ and is used to assess status
5-6 years
linear model f(year)=μ+βyear
log concentrations are assumed to vary linearly with time; the fitted model is used to assess status and evidence of temporal change
7+ years
smooth model f(year) = s(year)
log concentrations are assumed to vary smoothly over time; the fitted model is used to assess status and evidence of temporal change.
The last case requires more explanation. When there are 7-9 years of data, both a linear model and a smoother (thin plate regression spline) on 2 degrees of freedom (df) are fitted to the data. Of these, the model chosen to make inferences about status and temporal trends is the one with the lower Akaike’s Information Criterion corrected for small sample size (AICc)[footnoteRef:3]. When there are 10-14 years of data, a linear model and smoothers on 2 and 3 df are fitted, with the chosen model that with the lowest AICc. And when there are 15+ years of data, a linear model and smoothers on 2, 3, and 4 df are fitted, with model selection again based on AICc. Effectively, the data determine the amount of smoothing, with AICc providing an appropriate balance between model fit and model parsimony[footnoteRef:4]. [3:  AICc is a model selection criterion that gives greater protection against overfitting than AIC when the sample size is small. For contaminant time series, small sample sizes correspond to few years of data. AICc is not formally defined for mixed models, but the usual definition is adapted to give a sensible criterion for the models considered here. The usual definition of AICc is
AICc = - 2 log likelihood+2kn/(n−k−1)
where n is the sample size and kk is the number of parameters in the model. For a contaminant time series, the natural definition of the sample size is the number of years of data, N, say. The number of parameters in the number of fixed effects parameters, kfixed, plus the number of (unknown) variance parameters, krandom. For example, the linear model has kfixed = 2 and krandom = 2 (or 1 if the sample variance component is subsumed into the year variance component). This suggests using
AICc = - 2 log likelihood+2(kfixed+krandom)N/(N−kfixed−krandom−1)
However, the denominator now overly penalises models because the ‘sample size’ is the number of years and, whilst subtracting krandomkrandom correctly corrects for the year variance component, it also corrects for the sample variance component which measures within-year variation. (Indeed, the denominator = 0 if N = 5 and the linear model is fitted, or NN = 3 or 4 and the mean model is fitted). It therefore makes sense to take krandom in the denominator to be 1, corresponding to the year variance component, giving:
AICc = - 2 log likelihood+2(kfixed+krandom)N/(N−kfixed−2)
The denominator is now analogous to that used in a linear model with a single normally distributed error term. The AICc is still undefined when N = 3 and the mean model is fitted, but this doesn’t matter in practice.]  [4:  Methods for estimating the smoothing degrees of freedom as part of the fitting process, for example by treating the amount of smoothing as an extra variance component, are available for several classes of models. However, such methods are not implemented in R for the case when the residual variance (the analyticalanalytical variance) is known. This is a topic for future development.] 

[bookmark: _Toc486935803]Assessing environmental status and temporal trends
Environmental status and temporal trends are assessed using the model fitted to the concentration data.
Environmental status is assessed by:
calculating the upper one-sided 95% confidence limit on the fitted mean log concentration in the most recent monitoring year[footnoteRef:5] [5:  Approximate standard errors on the fixed effects parameter estimates are obtained from the Hessian matrix. These are used to estimate standard errors on the fitted values, with confidence intervals based on a t-distribution with NN - kfixedkfixed - 1 degrees of freedom. One-sided t-tests of whether the fitted value in the last monitoring year is below the assessment criteria can be found on the Statistical analysis page on the right hand side of the summary map under Graphics. The standard errors can be computed analytically (i.e. without using the Hessian), but this hasn’t been implemented yet. The degrees of freedom for the t-tests is a sensible approximation because, for time series models, the natural definition of the ‘sample size’ is NN, the number of years of data (see discussion on AICc above). However, if the year variance is small compared to the other variances, the degrees of freedom might be too small leading to a loss of statistical power. This is a topic for future development.] 

back-transforming this to the concentration scale
comparing the back-transformed upper confidence limit to the available assessment criteria
For example, if the back-transformed upper confidence limit is below the Background Assessment Concentration (BAC), then the median concentration in the most recent monitoring year is significantly below the BAC and concentrations are said to be ‘at background’. For an example, see Fryer & Nicholson (1999).
No formal assessment of status is made when there are only 1 or 2 years of data. However, an ad-hoc assessment is made by:
calculating the median of the log concentration measurements in each year back-transforming these to the concentration scale comparing the back-transformed median log concentration (1 year) or the larger of the two back-transformed median log concentrations (2 years) to the assessment criteria.
Temporal trends are assessed for all time series with at least five years of data. When a linear model has been fitted (i.e. when there are 5-6 years of data, or if there are 7+ years of data and no evidence of nonlinearity), the statistical significance of the temporal trend is obtained from a likelihood ratio test[footnoteRef:6] that compares the fits of the linear model f(year)=μ+βyear  and the mean model f(year)=μ. The summary maps show a downward or upward trend if the trend is significant at the 5% significance level. [6:  These tests have a type 1 error that is larger than the nominal value. For example, tests conducted at the 5% significance level will find ‘significant’ trends in more than 5% of time series, even when there are no trends. Using the standard error of the estimate of ββ from a restricted maximum likelihood fit of the linear model would be one way to improve the situation. Better still would be to use the Kenward Roger modification of F tests for linear mixed models (Kenward MG & Roger JH, 1997; Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood, Biometrics 53: 983-997).] 

When a smooth model has been fitted, a plot of the fitted model is needed to understand the overall pattern of change. (This is available on the Raw data with assessment and Assessment pages on the right side of the summary map under Graphics.) The summary map focusses on just one aspect of the change over time: the change in concentration in the most recent twenty monitoring years; i.e. between 1995 and 2014 (the assessment only includes data up to 2014). For this, the fitted value of the smoother in 2014 is compared to the fitted value in 1995 using a t-test, with significance assessed at the 5% level. The correlation between the two fitted values is accounted for by the t-test. If the time series does not extend to 2014, then the fitted value in the last monitoring year is used instead. Similarly, if the time series starts after 1995, the fitted value in the first monitoring year is used.
Reference:
Fryer RJ & Nicholson MD, 1999. Using smoothers for comprehensive assessments of contaminant time series in marine biota. ICES Journal of Marine Science 56: 779-790.
[bookmark: _Toc486935804]Assessment criteria: Metals in biota
Two assessment criteria are used to assess metal concentrations in biota: the 
· Background Assessment Concentration (BAC)
· European Commission food standard (EC)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels.  Mean concentrations significantly below the BAC are said to be near background.
ECs have been used in the absence of any satisfactory criteria for assessing the ecological significance of biota concentrations.  ECs are the maximum acceptable concentrations in food for the protection of public health.
BACs and ECs are available for the following metals:
	
	BAC
	EC

	
	Mussels
	Oysters
	  Fish  
	All species

	Cadmium
	  960
	3000
	26
	1000

	Copper
	6000
	6000
	
	

	Mercury
	    90
	  180
	35
	  500

	Lead
	1300
	1300
	26
	1500

	Zinc
	63000  
	63000  
	
	


Notes:
BACs for mussels and oysters are expressed as μg kg-1 dw and BACs for fish and ECs are expressed as μg kg-1 ww
· cadmium and lead are monitored in fish liver, for which no food standard exists; concentrations in fish liver are naturally higher than in fish muscle, so the food standards for fish muscle are not used; instead the food standards for shellfish are used as a proxy
· BACs and ECs are converted to other bases (wet, dry or lipid weight) using species-specific conversion factors (see appendix 2)
[bookmark: _Toc486935805]Assessment criteria: PAHs in biota
Two assessment criteria are used to assess PAH concentrations in biota: the
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background.
EACs were developed by OSPAR and the International Council for the Exploration of the Sea for assessing the ecological significance of biota concentrations. Concentrations below the EAC should not cause any chronic effects in marine organisms.
BACs and EACs are available for the following PAHs in mussels and oysters: 
	
	BAC
	EAC

	Naphthalene
	
	 340

	Phenanthrene
	11.0 
	1700 

	Anthracene
	
	 290

	Fluoranthene
	12.2 
	 110

	Pyrene
	 9.0
	 100

	Benz[a]anthracene
	 2.5
	   80

	Chrysene (Triphenylene)
	 8.1
	

	Benzo[a]pyrene
	 1.4
	 600

	Benzo[ghi]perylene
	 2.5
	 110

	Indeno[123-cd]pyrene
	 2.4
	


Notes:
all concentrations are expressed as μg kg-1 dw
· BACs and EACs are converted to other bases (wet, dry or lipid weight) using species-specific conversion factors (appendix 2)
· PAHs are not routinely monitored in fish, so no BACs and EACs for fish have been derived
[bookmark: _Toc486935806]Assessment criteria: CBs in biota
Two assessment criteria are used to assess CB concentrations in biota: the
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background. EACs were developed by OSPAR and the International Council for the Exploration of the Sea for assessing the ecological significance of biota concentrations. Concentrations below the EAC should not cause any chronic effects in marine organisms.
BACs and EACs are available for the following CBs:
	
	BAC
	EAC

	
	mussels and oysters
	fish
	all biota

	CB28
	0.75
	0.10
	  67

	CB52
	0.75
	0.08
	108

	CB101
	0.70
	0.08
	121

	CB105
	0.75
	0.08
	

	CB118
	0.60
	0.10
	  25

	CB138
	0.60
	0.09
	317

	CB153
	0.60
	0.10
	1585  

	CB156
	0.60
	0.08
	

	CB180
	0.60
	0.11
	469


Notes:
BACs are expressed as μg kg-1 dw for mussels and oysters and as μg kg-1 ww for fish
· EACs are expressed as μg kg-1 lw
· BACs and EACs are converted to other bases (wet, dry or lipid weight) using species-specific conversion factors (appendix 2)
· the EACs are based on partitioning theory and are sometimes known as EACpassive
[bookmark: _Toc486935807]Assessment criteria: Pesticides in biota
Two assessment criteria are used to assess pesticide concentrations in biota: the
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background.

EACs were developed by OSPAR and the International Council for the Exploration of the Sea for assessing the ecological significance of biota concentrations. Concentrations below the EAC should not cause any chronic effects in marine organisms.
BACs and EACs are available for the following pesticides:
	
	Mussels and oysters
	Fish

	
	BAC
	EAC
	BAC
	EAC

	DDE (p,p')
	0.63
	
	0.10
	

	Hexachlorobenzene
	0.63
	 
	0.09
	

	α-HCH
	0.64
	 
	
	

	γ-HCH
	0.97
	1.45
	
	11


Notes:
· BACs and EACs are expressed as μg kg-1 dw for mussels and oysters and as μg kg-1 ww for fish
· BACs and EACs are converted to other bases (wet, dry or lipid weight) using species-specific conversion factors (appendix 2)
· γ-HCH is monitored in fish liver and the EAC is obtained by multiplying the EAC for whole fish by 10
[bookmark: _Toc486935808]Assessment criteria: Organo-metals in biota
Two assessment criteria are used to assess organo-metal concentrations in biota: the
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background.

EACs were developed by OSPAR and the International Council for the Exploration of the Sea for assessing the ecological significance of biota concentrations. Concentrations below the EAC should not cause any chronic effects in marine organisms.


BACs and EACs are available for the following organo-metals:
	

	Mussels and oysters
	Fish

	
	BAC
	EAC
	BAC
	EAC

	Tributyltin
	5.0
	12.0
	
	


Notes:
· BACs and EACs are expressed as μg kg-1 dw for mussels and oysters
· BACs and EACs are converted to other bases (wet, dry or lipid weight) using species-specific conversion factors (appendix 2)

[bookmark: _Toc486935809]Assessment criteria: Organo-bromines in biota
Assessment criteria for organo-bromines in biota are under development. 
[bookmark: _Toc486935810]Assessment criteria: Dioxins and Furans in biota
Assessment criteria for dioxins and Furans in biota are under development. 
[bookmark: _Toc486935811]Assessment criteria: Persistent organic pollutants in biota
Assessment criteria for persistent organic pollutants in biota are under development. 
[bookmark: _Toc486935812]Assessment methodology for biological effects
The assessment methodology for biological effects measurements is essentially the same as that for chemical concentrations in biota. However, some modifications are required for glutathionine transferase, acetylcholine esterase activity, aminolevulinic acid dehydratase and scope for growth.
Low values of these variables indicate unhealthy organisms, so status is assessed using the lower one-sided 95% confidence limit on the fitted mean value in the most recent monitoring year. For example, if the lower confidence limit is above the Background Assessment Concentration (BAC), then the mean value in the most recent monitoring year is significantly above the BAC and levels are said to be ‘at background’.
Scope for growth
The measurements are not log transformed because scope for growth can be negative and because the data are approximately normally distributed on the untransformed scale. Consequently, all models are of temporal changes on the original scale. Further, low scope for growth indicates unhealthy organisms, so status is assessed using the lower one-sided 95% confidence limit on the fitted mean scope for growth in the most recent monitoring year. As the data have not been transformed before modelling, the lower confidence limit is compared directly to the assessment criteria; i.e. there is no need for any back-transformation.


[bookmark: _Toc486935813]Assessment criteria: Biological effects
Two assessment criteria are used to assess biological effects: the
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
The assessment criteria were developed within the Oslo and Paris Commission (OSPAR) framework with scientific advice from the International Council for the Exploration of the Sea. Mean values significantly below the BAC are said to be near background. Values below the EAC indicate no chronic effects on the organisms concerned. Full details can be found in Davies & Vethaak (2012) or OSPAR (2013). 

BACs and EACs are available for EROD, bile metabolites and scope for growth

References
Davies, I. M. and Vethaak, A. D. 2012. Integrated marine environmental monitoring of chemicals and their effects. ICES Cooperative Research Report No. 315. 277 pp.

OSPAR, 2013. Background documents and technical annexes for biological effects monitoring (Update 2013). OSPAR Commission, London. Publication 589, 238 pp.
[bookmark: _Toc486935814]Assessment criteria: EROD
	Species
	Latin name
	Sex
	Matrix
	BAC

	Cod
	Gadus morhua
	Both
	Liver microsome
	145

	Dab
	Limanda limanda
	Female
	Liver S9
	178

	
	
	Male
	Liver S9
	147

	
	
	Both
	Liver microsome
	680

	Dragonet
	Callionymus lyra
	Both
	Liver microsome
	202

	Flounder
	Platichthys flesus
	Male
	Liver S9
	24

	Four spotted megrim
	Lepidorhombus boscii
	Both
	Liver microsome
	13

	Plaice
	Pleuronectes platessa
	Male
	Liver S9
	9.5

	
	
	Both
	Liver microsome
	255

	Red mullet
	Mullus barbatus
	Male
	Liver S9
	208


Notes:
· BACs are expressed as pmol min-1 mg S9 protein-1 or pmol min-1 mg microsomal protein-1 for the liver S9 and liver microsome matrices respectively
· there are no EACs for EROD

[bookmark: _Toc486935815]Assessment criteria: Bile metabolites
	Bile metabolite
	Species
	Latin name
	Method
	BAC
	EAC

	1-OH pyrene
	Cod
	Gadus morhua
	HPLC-F
	21    
	

	
	
	
	GC-MS
	
	483

	
	Dab
	Limanda limanda
	HPLC-F
	16    
	

	
	Flounder
	Platichthys flesus
	HPLC-F
	16    
	

	
	Haddock
	Melanogrammus aeglefinus
	HPLC-F
	13    
	

	1-OH pyrene equivalents
	Cod
	Gadus morhua
	SSF
	1.1
	  35

	
	Dab
	Limanda limanda
	SSF
	  0.15
	  22

	
	Flounder
	Platichthys flesus
	SSF
	1.3
	  29

	
	Haddock
	Melanogrammus aeglefinus
	SSF
	1.9
	  35

	1-OH phenanthrene
	Cod
	Gadus morhua
	HPLC-F
	2.7
	

	
	
	
	GC-MS
	
	528

	
	Dab
	Limanda limanda
	HPLC-F
	3.7
	

	
	Flounder
	Platichthys flesus
	HPLC-F
	3.7
	

	
	Haddock
	Melanogrammus aeglefinus
	HPLC-F
	0.8
	


Notes:
· HPLC-F is high performance liquid chromatography - fluorescence, GC-MS is gas chromatography - mass spectrometry, and SSF is synchronous scan fluorescence 341/383 nm
· BACs and EACs are expressed as ng ml-1 for HPLC-F, ng g-1 for GC-MS, and pyrene-type μg ml-1 for SSF
· the proliferation of methods and units are the origins of which are unclear


[bookmark: _Toc486935816]Assessment criteria; Scope for growth
	Species
	BAC
	EAC

	Mussels
	25
	15


Notes:
· BACs and EACs are expressed as J h-1 g-1
· High values of scope for growth indicate healthy mussels
[bookmark: _Toc486935817]Assessment methodology for imposex
Overview
Ideally, imposex data are submitted as individual measurements; for example, as the Vas Deferens Sequence (VDS) of each female snail. This provides information about variation between individuals, and allows efficient statistical models to be fitted to assess trends and status. However, sometimes the data are submitted as an annual index; for example, as the Vas Deferens Sequence Index (VDSI), the arithmetic mean of the individual VDS measurements. A more ad-hoc modelling approach is then all that is possible. This help file describes the methodology for assessing time series of individual VDS measurements. Other help files describe the approach when VDS data are submitted as annual indices, or as a mixture of individual measurements and annual indices.
For some species, imposex stage or intersex stage are reported rather than VDS, again either as individuals or annual indices[footnoteRef:7]. However, for these measures, there is insufficient variation in stage between individuals to model the individual measurements and instead the annual indices are assessed. [7:  Imposex in Nassarius reticulatus, Neptunea antiqua, Nucella lapillus and Ocenebra erinaceus is assessed using VDS. Imposex in Littorina littorea and Buccinum undatum is assessed using intersex stage and imposex stage respectively. ] 

Changes to the methodology since the 2014 assessment can be found in appendix 1.
[bookmark: _Toc486935818]Proportional odds model
The individual VDS measurements are modelled with a proportional odds model (McCullagh & Nelder, 1989). Let yijbe the VDS measurement of the jjth female snail in year ti,i=1...N, with yij∈{0,...,K} where K is the highest possible VDS class[footnoteRef:8]. It is assumed that [8:  K = 6 for Nassarius reticulatus, Nucella lapillus and Ocenebra erinaceus and K = 4 for Neptunea antiqua. ] 

logit(Prob(yij≤k))=f(ti)+θk
for 0≤k≤K−1, with Prob(yij≤K)=1. Here,  f(t) is a function that describes how imposex levels change over time (year). Various forms of f(t) are considered and these are discussed in the next section. The θk are cut points that measure the odds of being in a particular VDS class or below. Since the classes are ordered, the cut points are subject to the constraints:
θ0<θ1<...<θ K−1[footnoteRef:9]. [9:  An additional constraint is necessary for identifiability since f(t) is also in the linear predictor. Typically, one of the intermediate cut-points is set to zero. ] 

The model is fitted by maximum likelihood. However, there are rarely sufficient data in a single time series to estimate the cut points precisely, so the cut points are first estimated from a saturated model fitted to multiple time series (described later) and are then assumed fixed and known[footnoteRef:10]. The only parameters estimated when fitting the proportional odds model to a single time series are thus the parameters of f(t). Parameter standard errors are estimated from the Hessian matrix[footnoteRef:11]. [10:  Even with multiple time series, there are sometimes very few snails with VDS measurements in the highest class K. This can lead to difficulties estimating the highest cut-point, so the pragmatic decision is taken to combine the upper two classes with e.g. K reducing from 6 to 5. If there are still few snails in the (new) highest class, the process is repeated with e.g. K reducing to 4. ]  [11:  Even with multiple time series, there are sometimes very few snails with VDS measurements in the highest class KK. This can lead to difficulties estimating the highest cut-point, so the pragmatic decision is taken to combine the upper two classes with e.g. K reducing from 6 to 5. If there are still few snails in the (new) highest class, the process is repeated with e.g. K reducing to 4. 
5 The variance of the parameter estimates is obtained from the Hessian matrix in the usual way. If there is any evidence of over-dispersion (see footnote 7), the variance matrix is then multiplied by the estimate of the dispersion parameter. ] 

McCullagh P & Nelder JA, 1989. Generalised Linear Models (second edition). Chapman & Hall, London.
[bookmark: _Toc486935819]Form of f(t)
Several different candidate forms of f(t) are considered, depending on the length of the time series. As well as linear logistic and smooth trends, change-point models are considered. These are motivated by the patterns seen in many time series, where there are steep declines in VDS levels starting in the mid 2000s. These changes coincide with the introduction of EC Regulation 782/2003, which implemented the provisions of the International Maritime Organisation’s Antifouling Systems Convention (IMO, 2001) prohibiting application of TBT surface coatings to all vessels by 2003, and the global ban on TBT which came into force in September 2008. The steep declines usually cannot be described adequately by linear logisitic models, or even smoothers. However, change-point models provide a way of capturing the steep decline with relatively few parameters. The years 2004, 2005, 2006, 2007 and 2008 are regarded as potential change-years, since the environmental response to the TBT measures is likely to have started in this period.
Intuitively, the complexity of the candidate forms of f(t) should be based on the number of years of data, NN. For example, with 8 years of data, one might consider a linear model f(t)=μ+βt and a smoother f(t)=s(t) on 2 degrees of freedom (df) (analogous to the models fitted to contaminant time series). However, this runs into numerical difficulties when a time series starts with a series of years in which all VDS measurements equal the maximum value KK, or ends with a series of years in which all VDS measurements equal 0, as the amount of information in the data for estimating f(t) is then reduced[footnoteRef:12]. Instead, the candidate forms of f(t) are based on NmidNmid, an approximate measure of the number of years of data that contain information about changes in VDS levels. Loosely, NmidNmid is the number of years in the ‘middle’ of the timeseries, where intermediate VDS levels are observed. Formally, NmidNmid is defined as follows. Let Ii = 1 if all the VDS measurements in year ti< equal K, -1 if all the VDS measurements in year ti equal 0, and 0 otherwise. Let [12:  If all the VDS measurements for a series of years are equal to K, then there is negligible information with which to ‘anchor’ the estimates of f(t). All we know is that, on the logistic scale, f(t) could be anywhere between ‘large’ and infinite. ] 

i1=1,N,min{i:Ii+1<1},if I1<1if Ii=1 ∀ I otherwise 

i1={1,if I1<1N,if Ii=1∀imin{i:Ii+1<1}, otherwise
Similarly, let


Then {ti,i=i1,...,i2} are the ‘middle’ years of the time series and Nmid=i2−i1+1.
The linear and smooth candidate forms of f(t) are then
N≤2
no model is fitted
N≥3 and Nmid=1
mean model f(t)=μ
The VDS measurements in the entire time series either all equal K or all equal 0, so there is no trend.
N≥3 and Nmid=2,3 or 4
linear model f(t)=μ+βt
Nmid≥5
linear model f(t)=μ+βt and smooth model f(t)=s(t)
Smoothers on 2 degrees of freedom (df) are considered when 5≤Nmid≤7, on 2 and 3 df when 8≤Nmid≤10 and on 2, 3, and 4 df when Nmid≥1.

Change-point models are also considered provided that the time series starts before 2008 and that N≥3N≥3 and Nmid>1. Each change point model is of the form
f(t)={μ,μ+g(t), if t<tchange if t≥tchange
where tchange is the change year and g(tchange)=0 to ensure  f(t) is continuous. Let N∗mid be the number of ‘middle’ years from tchangetchange onwards; i.e. |{ti:ti≥tchange and i≥=i1}||{ti:ti≥tchange and i≥=i1}|. Then, similar to above, the form of g(t)g(t) depends on N∗mid.


N∗mid=2,3 or 4
linear change-point model g(t)=β(t− tchange )
N∗mid ≥5
linear change-point model g(t)=β(t−tchange) and smooth change-point model g(t)=s(t), with s(tchange) = 0
Smoothers on 2 degrees of freedom (df) are considered when 5≤N∗mid ≤7, on 2 and 3 df when 8≤N∗mid ≤10 and on 2, 3, and 4 df when N∗mid ≥11.
The change-point models are fitted for each change-year tchangetchange = 2004, 2005, 2006, 2007, 2008 in turn, provided that t1<tchange; i.e. the time series started before the change-year.
All the candidate models are fitted by maximum likelihood, with the final model chosen using AICc[footnoteRef:13]. For some time series, there are many candidate models and there is a danger of over-fitting the data. However, this is mitigated somewhat by the fact that the models have been tailored to patterns of change seen in so many time series. It is also preferable to overfit rather than underfit for the purposes of assessing environmental status. Linear or smooth models often overpredict VDS levels in the final monitoring year, so if these are the only models considered, status will appear to be poorer than it should be. [13:  AICc is a model selection criterion that gives greater protection against overfitting than AIC when the sample size is small. The usual definition of AICc is
AICc = - 2 log likelihood + 2pn/(n−p−1)
where n is the sample size and p is the number of parameters in the model. For a VDS time series, the natural definition of the sample size is the number of years of data, N. (One might consider using Nmid but things are complicated enough as it is.) Further, pp is the number of parameters associated with f(t) (with the cut-points ignored). For example, the linear model has p = 2. However, there is often evidence of over-dispersion and, although AICc is then formally undefined, a sensible adjustment can be made by dividing the log likelihood by an estimate of the dispersion parameter, and extending the second term to account for the additional (dispersion) parameter. This gives
AICc = - 2 log likelihood/ϕ + 2(p+1)N/(N−p−2)
where ϕ is the dispersion parameter. The value of ϕ is common to all the candidate models and is estimated by fitting all the candidate models in turn and comparing each to the fit of a full model. Let di be the deviance (- 2 log likelihood) of candidate model i and let pi be the corresponding number of model parameters. Further, let dfulldfull be the deviance of a full model in which f(t)=μt; i.e. there is a separate parameter estimated for each year. Then the dispersion parameter for model ii is estimated to be
ϕi=max(1,di−dfull/(N−pi))
and the dispersion parameter used in the AICc calculations is ϕ=min(ϕi). If N≤4, then AICc is undefined, and AIC is used instead where
AIC = - 2 log likelihood/ϕ + 2p
] 

[bookmark: _Toc486935820]Estimating the cut-points
The cut-points θk,k=0,...,K−1 determine the probability of being in each VDS class given the underlying level of TBT contamination (represented by f(t) above). The cut-points can be thought of as measuring the eco-toxicological response of a species to TBT contamination and might reasonably be assumed to be constant over a wide area. The cut-points can therefore be estimated with good precision by fitting a ‘full’ model to the data from many time series collected over a wide area.
Suppose that, for a particular species and area, there are VDS time series at MM stations. With some abuse of notation, let ymij be the VDS measurement of the jth female snail in year tmi from station mm. Then the full model is
logit(Prob(ymij≤k))=μmi+θk
where μmi represents the underlying level of TBT contamination in year tmitmi at station mm. The species area combinations used for estimating the cut-points are found in appendix 4.
[bookmark: _Toc486935821]Estimating the mean VDS class
The mean VDS class in year tt, denoted v(t), is

where Yt is a random variable describing the VDS class of individual snails in year t. The probabilities are expressed in terms of f(t) and the cut-points through the relationships
 Prob(Yt=k)= Prob(Yt≤k)− Prob(Yt≤k−1)
=[exp(f(t)+θk)/(1+exp(f(t)+θk))]−[exp(f(t)+θk−1)/(1+exp(f(t)+θk−1))] 
with Prob(Yt≤K)= 1 as before. The mean VDS class v(t) is then estimated by plugging the estimates of f(t) and the cut-points into these formulae.
Approximate confidence intervals on v(t) are obtained by simulating the distribution of the estimates of f(t) and the cut-points and hence the distribution of v(t)^[footnoteRef:14]. In particular, an upper one-sided 95% confidence limit on v(t) is the 95% ordered value of the simulated distribution of v(t)^. [14:  The estimates of the parameters of f(t) are assumed to be normally distributed with variance obtained from the Hessian matrix of the likelihood of the individual time series data (and multiplied by the over-dispersion parameter). The estimates of the cut-points are also assumed to be normally distributed with variance obtained from the Hessian matrix of the likelihood of the multiple time series data used to estimate the cut-points. For simplicity, the two sets of estimates are assumed to be independent. Typically, 1000 realisations are simulated. ] 

[bookmark: _Toc486935822]Assessing environmental status and temporal trends
Environmental status and temporal trends are assessed using the model fitted to the VDS data
Environmental status is assessed by comparing the upper one-sided 95% confidence limit on the mean VDS class in the most recent monitoring year (see previous section) to the available assessment criteria. For example, if the upper confidence limit is below the Background Assessment Concentration (BAC), then the mean VDS class in the most recent monitoring year is significantly below the BAC and VDS levels are said to be ‘at background’.
No formal assessment of status is made when there are only 1 or 2 years of data. However, an ad-hoc assessment is made by computing an upper one-sided 95% confidence limit on the mean VDS class in the final monitoring year from the full model used to estimate the cut-points. This confidence limit is then compared to the assessment criteria.
Temporal trends are assessed for all time series with at least three years of data. When a linear or a linear change-point model has been fitted, the statistical significance of the temporal trend is obtained from an F test[footnoteRef:15] that compares the fits of the linear (change-point) model and the mean model f(year)=μf(year)=μ. The summary maps show a downward or upward trend if the trend is significant at the 5% significance level. [15:  Let dfinal be the deviance (-2 log likelihood) of the linear (change-point) model, dmean be the deviance of the mean model, and ϕ be the dispersion parameter. Then F=(dfinal−dmean)/ϕ is referred to an F distribution on 1 and N−2 degrees of freedom. ] 

When a smooth or a smooth change-point model has been fitted, a plot of the fitted model is needed to understand the overall pattern of change. (This is available on the Raw data with assessment and Assessment pages on the right side of the summary map under Graphics.) The summary map focusses on just one aspect of the change over time: the change in f(t)f(t) in the most recent twenty monitoring years; i.e. between 1995 and 2014 (the assessment only includes data up to 2014). For this, the fitted value of the smoother in 2014 is compared to the fitted value in 1995 using a t-test, with significance assessed at the 5% level[footnoteRef:16]. The correlation between the two fitted values is accounted for by the t-test. If the time series does not extend to 2014, then the fitted value in the last monitoring year is used instead. Similarly, if the time series starts after 1995, the fitted value in the first monitoring year is used. [16:  The t test has N−p degrees of freedom, where p is the number of parameters in f(t). ] 

[bookmark: _Toc486935823]Assessment criteria: Imposex
Two assessment criteria are used to assess imposex in snails: the
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
The assessment criteria were developed within the Oslo and Paris Commission (OSPAR) framework with scientific advice from the International Council for the Exploration of the Sea. Mean values significantly below the BAC are said to be near background. Values below the EAC indicate no chronic effects of Tributyltin on snails. Full details can be found in OSPAR (2013).
BACs and EACs are available for the following species and imposex measures:
	Measure
	Species
	Latin name
	BAC
	EAC

	VDS
	Dog whelk
	Nucella lapillus
	0.3
	2.0

	VDS
	Red whelk
	Neptunea antiqua
	0.3
	2.0

	VDS
	Netted dog whelk
	Nassarius reticulatus
	
	0.3

	IMPS
	Common whelk
	Buccinum undatum
	
	0.3



References
OSPAR, 2013. Background documents and technical annexes for biological effects monitoring (Update 2013). OSPAR Commission, London. Publication 589, 238 pp.
[bookmark: _Toc486935824]Assessment methodology for contaminants in sediment
[bookmark: _Toc486935825]Overview
Time series of contaminant concentrations in sediment are assessed in three stages:
1. The concentrations are normalised to account for changes in the bulk physical composition of the sediment such as particle size distribution or organic carbon content. (This is not done for the Iberian Sea or the Gulf of Cadiz)
2. The (normalised) concentrations are log transformed and changes in the log concentrations over time are modelled using linear mixed models. The type of temporal change that is considered depends on the number of years of data:
· 1-2 years: no model is fitted because there are insufficient data
· 3-4 years: concentrations are assumed to be stable over time and the mean log concentration is estimated
· 5-6 years: a linear trend in log concentration is fitted
· 7+ years: more complex (smooth) patterns of change over time are modelled
3. The fitted models are used to assess environmental status against available assessment criteria and evidence of temporal change in contaminant levels in the last twenty years
These stages are described in more detail below. Other help files describe how the methodology is adapted when there are ‘less-than’ measurements, i.e. some concentrations are reported as below the detection limit, and missing uncertainties, i.e. the analytical variability associated with some of the concentration measurements was not reported. Changes to the methodology since the 2014 assessment can be found in appendix 2.
[bookmark: _Toc486935826]Normalisation
In most sub-regions, the concentrations are first normalised to account for changes in the bulk physical composition of the sediment such as particle size distribution or organic carbon content. (Concentrations from the Iberian Sea and the Gulf of Cadiz are not normalised.) Normalisation requires pivot values, estimates of the concentrations of contaminants and normalisers in pure sand. A normalised concentration is given by:

where
· css is the normalised concentration of the contaminant
· cm is the measured concentration of the contaminant
· cx is the pivot concentration for the contaminant
· nss is the reference concentration of the normaliser
· nm is the measured concentration of the normaliser
· nx is the pivot concentration for the normaliser
The analytical standard deviation uu of the normalised concentration is estimated from:

where uc and un are the analytical standard deviations of the contaminant and normalised concentration measurements respectively. These are submitted with the data where they are known as ‘uncertainties’.
Metal concentrations are normalised to a standard sediment with 5% aluminium. The pivot values cx and nx and reference concentration nss depend on the digestion method used in the chemical extraction and can be found in appendix 3. Organic concentrations are normalised to a standard sediment with 2.5% organic carbon content and, regardless of the digestion method, nssnss = 2.5. For organics, the contaminant and normaliser pivot values are both 0, so the formulae above simplify to:

and

[bookmark: _Toc486935827]Modelling changes in log concentration over time
The log (normalised) concentrations are modelled by a linear mixed model of the form:
· response: log concentration
· fixed: f(year)
· random: year + sample + analytical
The fixed effects model describes how log concentrations change over time (year), where the form of f(year) depends on the number of years of data (described in the next paragraph). The random effects model has three components:
· year: random variation in log concentration between years. Here, year is treated as a categorical variable
· sample: random variation in log concentration between samples within years. When there is only one sample each year, this term is omitted and implicitly subsumed into the between-year variation
· analytical: random variation inherent in the chemical measurement process. This is assumed known and derived from the the ‘uncertainties’ reported with the data. Specifically, if ui, i=1...n, are the uncertainties associated with concentrations cici (expressed as the standard deviations of the concentration measurements), then the standard deviations of the log concentration measurements  log ci are taken to be ui/ci. Measurements with ui>ci (i.e. an analytical coefficient of variation of more than 100%) are omitted from the time series. When the concentrations are normalised, then the uncertainties are the analytical standard deviations of the normalised concentrations calculated in the previous section.
The model is fitted by maximum likelihood assuming each of the random effects are independent and normally distributed (on the log concentration scale)[footnoteRef:17]. [17:  Such models cannot be readily fitted in the R statistical environment because the analytical variance is assumed know. Instead, the likelihood is maximised directly using the optim function. Ideally, the models should be fitted by restricted maximum likelihood (apart from when being used for likelihood ratio tests), but this has not been implemented yet. ] 

The form of f(year) depends on the number of years of data:
1-2 years
no model is fitted as there are too few years for formal statistical analysis
3-4 years
mean model f(year)=μ
there are too few years for a formal trend assessment, but the mean level is summarised by μ and is used to assess status
5-6 years
linear model f(year)=μ+βyear
log concentrations are assumed to vary linearly with time; the fitted model is used to assess status and evidence of temporal change
7+ years
smooth model f(year) = s(year)
log concentrations are assumed to vary smoothly over time; the fitted model is used to assess status and evidence of temporal change
The last case requires more explanation. When there are 7-9 years of data, both a linear model and a smoother (thin plate regression spline) on 2 degrees of freedom (df) are fitted to the data. Of these, the model chosen to make inferences about status and temporal trends is the one with the lower Akaike’s Information Criterion corrected for small sample size (AICc)[footnoteRef:18]. When there are 10-14 years of data, a linear model and smoothers on 2 and 3 df are fitted, with the chosen model that with the lowest AICc. And when there are 15+ years of data, a linear model and smoothers on 2, 3, and 4 df are fitted, with model selection again based on AICc. Effectively, the data determine the amount of smoothing, with AICc providing an appropriate balance between model fit and model parsimony[footnoteRef:19]. [18:  AICc is a model selection criterion that gives greater protection against overfitting than AIC when the sample size is small. For contaminant time series, small sample sizes correspond to few years of data. AICc is not formally defined for mixed models, but the usual definition is adapted to give a sensible criterion for the models considered here. The usual definition of AICc is 
AICc = - 2 log likelihood+2kn/(n−k−1)
where n is the sample size and k is the number of parameters in the model. For a contaminant time series, the natural definition of the sample size is the number of years of data, N, say. The number of parameters in the number of fixed effects parameters, kfixed, plus the number of (unknown) variance parameters, krandomkrandom. For example, the linear model has kfixed = 2 and krandom = 2 (or 1 if the sample variance component is subsumed into the year variance component). This suggests using
AICc = - 2 log likelihood+2(kfixed+krandom)N/(N−kfixed−krandom−1)
However, the denominator now overly penalises models because the ‘sample size’ is the number of years and, whilst subtracting krandomkrandomcorrectly corrects for the year variance component, it also corrects for the sample variance component which measures within-year variation. (Indeed, the denominator = 0 if N = 5 and the linear model is fitted, or N = 3 or 4 and the mean model is fitted). It therefore makes sense to take krandomkrandom in the denominator to be 1, corresponding to the year variance component, giving
AICc = - 2 log likelihood+2(kfixed+krandom)N/(N−kfixed−2)
The denominator is now analogous to that used in a linear model with a single normally distributed error term. The AICc is still undefined when N= 3 and the mean model is fitted, but this doesn’t matter in practice. ]  [19:  Methods for estimating the smoothing degrees of freedom as part of the fitting process, for example by treating the amount of smoothing as an extra variance component, are available for several classes of models. However, such methods are not implemented in R for the case when the residual variance (the analyticalanalytical variance) is known. This is a topic for future development. ] 

[bookmark: _Toc486935828]Assessing environmental status and temporal trends
Environmental status and temporal trends are assessed using the model fitted to the concentration data.
Environmental status is assessed by:
· calculating the upper one-sided 95% confidence limit on the fitted mean log concentration in the most recent monitoring year[footnoteRef:20] [20:  Approximate standard errors on the fixed effects parameter estimates are obtained from the Hessian matrix. These are used to estimate standard errors on the fitted values, with confidence intervals based on a t-distribution with N - kfixed - 1 degrees of freedom. One-sided t-tests of whether the fitted value in the last monitoring year is below the assessment criteria can be found on the Statistical analysis page on the right hand side of the summary map under Graphics. The standard errors can be computed analytically (i.e. without using the Hessian), but this hasn’t been implemented yet. The degrees of freedom for the t-tests is a sensible approximation because, for time series models, the natural definition of the ‘sample size’ is N, the number of years of data (see discussion on AICc above). However, if the year variance is small compared to the other variances, the degrees of freedom might be too small leading to a loss of statistical power. This is a topic for future development. ] 

· back-transforming this to the concentration scale
· comparing the back-transformed upper confidence limit to the available assessment criteria
For example, if the back-transformed upper confidence limit is below the Background Assessment Concentration (BAC), then the median concentration in the most recent monitoring year is significantly below the BAC and concentrations are said to be ‘at background’. For an example, see Fryer & Nicholson (1999).
No formal assessment of status is made when there are only 1 or 2 years of data. However, an ad-hoc assessment is made by:
· calculating the median of the log concentration measurements in each year
· back-transforming these to the concentration scale
· comparing the back-transformed median log concentration (1 year) or the larger of the two back-transformed median log concentrations (2 years) to the assessment criteria.
Temporal trends are assessed for all time series with at least five years of data. When a linear model has been fitted (i.e. when there are 5-6 years of data, or if there are 7+ years of data and no evidence of nonlinearity), the statistical significance of the temporal trend is obtained from a likelihood ratio test[footnoteRef:21] that compares the fits of the linear model f(year)=μ+βyear and the mean model f(year)=μ. The summary maps show a downward or upward trend if the trend is significant at the 5% significance level. [21:  These tests have a type 1 error that is larger than the nominal value. For example, tests conducted at the 5% significance level will find ‘significant’ trends in more than 5% of time series, even when there are no trends. Using the standard error of the estimate of β from a restricted maximum likelihood fit of the linear model would be one way to improve the situation. Better still would be to use the Kenward Roger modification of F tests for linear mixed models (Kenward MG & Roger JH, 1997; Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood, Biometrics 53: 983-997). ] 

When a smooth model has been fitted, a plot of the fitted model is needed to understand the overall pattern of change. (This is available on the Raw data with assessment and Assessment pages on the right side of the summary map under Graphics.) The summary map focusses on just one aspect of the change over time: the change in concentration in the most recent twenty monitoring years; i.e. between 1995 and 2014 (the assessment only includes data up to 2014). For this, the fitted value of the smoother in 2014 is compared to the fitted value in 1995 using a t-test, with significance assessed at the 5% level. The correlation between the two fitted values is accounted for by the t-test. If the time series does not extend to 2014, then the fitted value in the last monitoring year is used instead. Similarly, if the time series starts after 1995, the fitted value in the first monitoring year is used.
Fryer RJ & Nicholson MD, 1999. Using smoothers for comprehensive assessments of contaminant time series in marine biota. ICES Journal of Marine Science 56: 779-790.
[bookmark: _Toc486935829]Assessment criteria: Metals in sediment
Two assessment criteria are used to assess metal concentrations in sediment: the 
Background Assessment Concentration (BAC)
Effects Range Low (ERL)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels.  Mean concentrations significantly below the BAC are said to be near background.

ERLs were developed by the United States Environmental Protection Agency for assessing the ecological significance of sediment concentrations.  Concentrations below the ERL rarely cause adverse effects in marine organisms.
BACs and / or ERLs are available for the following metals:
	
	BAC
	BAC
	ERL

	
	All subregions except
Iberian Sea and Gulf of Cadiz
	Iberian Sea
and Gulf of Cadiz
	All subregions

	Arsenic
	25   
	
	  8.2

	Cadmium
	    0.31
	    0.129
	  1.2

	Chromium
	81   
	
	81 

	Copper
	27   
	
	34 

	Mercury
	    0.07
	    0.091
	    0.15

	Nickel
	36   
	
	21 

	Lead
	38   
	22.4   
	47 

	Zinc
	122     
	
	150 



Notes:
· all concentrations are expressed as mg kg-1 dw
· BACs are normalised to 5% aluminium in all subregions except the Iberian Sea and Gulf of Cadiz, where BACs are not normalised
· for arsenic and nickel, the ERLs are below the OSPAR Background Concentrations of 15 and 30 mg kg-1 respectively; concentrations are only assessed against the BAC
· for chromium, the ERL equals the BAC; concentrations are only assessed against the ERL
[bookmark: _Toc486935830]Assessment criteria: PAHs in sediment
Two assessment criteria are used to assess PAH concentrations in sediment: the 
Background Assessment Concentration (BAC)
Effects Range Low (ERL)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels.  Mean concentrations significantly below the BAC are said to be near background.
ERLs were developed by the United States Environmental Protection Agency for assessing the ecological significance of sediment concentrations.  Concentrations below the ERL rarely cause adverse effects in marine organisms.
BACs and / or ERLs are available for the following PAHs:
	
	BAC
	BAC
	ERL

	
	All subregions except
Iberian Sea and Gulf of Cadiz
	Iberian Sea
and Gulf of Cadiz
	All subregions

	Naphthalene
	   8
	
	160 

	Phenanthrene
	 32
	 7.3
	240 

	Anthracene
	   5
	 1.8
	 85

	Dibenzothiophene
	
	
	190 

	Fluoranthene
	 39
	14.4 
	600 

	Pyrene
	 24
	11.3 
	665 

	Benz[a]anthracene
	 16
	 7.1
	261 

	Chrysene (Triphenylene)
	 20
	 8.0
	384 

	Benzo[a]pyrene
	 30
	 8.2
	430 

	Benzo[ghi]perylene
	 80
	 6.9
	 85

	Indeno[123-cd]pyrene
	103 
	 8.3
	240 


Notes:
· all concentrations are expressed as μg kg-1 dw
· BACs are normalised to 2.5% organic carbon in all subregions except the Iberian Sea and Gulf of Cadiz, where BACs are not normalised
[bookmark: _Toc486935831]Assessment criteria: CBs in sediment
Two assessment criteria are used to assess metal concentrations in sediment: the 
· Background Assessment Concentration (BAC)
· Environmental Assessment Criteria (EAC)
BACs were developed by the Oslo and Paris Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background.

EACs were developed by OSPAR and the International Council for the Exploration of the Sea for assessing the ecological significance of sediment concentrations. Concentrations below the EAC should not cause any chronic effects in marine organisms.


BACs and EACs are available for the following CBs:
	
	BAC
	BAC
	EAC

	
	All subregions except
Iberian Sea and Gulf of Cadiz
	Iberian Sea
and Gulf of Cadiz
	All subregions

	CB28
	0.22
	
	  1.7

	CB52
	0.12
	
	  2.7

	CB101
	0.14
	
	  3.0

	CB118
	0.17
	
	  0.6

	CB138
	0.15
	
	  7.9

	CB153
	0.19
	
	40.0

	CB180
	0.10
	
	12.0 


Notes:
· all concentrations are expressed as μg kg-1 dw
· BACs are normalised to 2.5% organic carbon
· BACs are under development for the Iberian Sea and Gulf of Cadiz, where concentrations are only assessed against the EAC
[bookmark: _Toc486935832]Assessment criteria: Organo-metals in sediment
Assessment criteria for organo-metals in sediment are under development. 
[bookmark: _Toc486935833]Assessment criteria: Organo-bromines in sediment
Assessment criteria for organo-bromines in sediment are under development. 


[bookmark: _Toc486935834]Appendix 1
[bookmark: _Toc486935835]Changes to the assessment methodolgy
Changes made since the 2014 Assessment are described below:
· 2016 Assessment
· 2015 Assessment
Helpfiles for previous assessments can be found below:
2015 assessment
assessment of contaminants in biota
assessment of contaminants in sediment
assessment of biological effects
assessment of imposex
2014 assessment
assessment of contaminants in biota
assessment of contaminants in sediment
assessment of biological effects
assessment of imposex

[bookmark: _Toc486935836]2016 Assessment Modelling of contaminants and biological effects
There were major changes in the way contaminant and biological effects time series were assessed. These included
Modelling the original data, rather than annual indices derived from the data using a linear mixed model that estimated the variance components in the data, rather than a loess smoother applied to the annual indices 
Correctly incorporating the analytical variation in the data (supplied as uncertainties), rather than using an ad-hoc ‘scaled weight’ to measure analytical quality
Adapting the likelihood so that less-than measurements are treated as left-censored observations
The changes are so wide-ranging that, to understand them properly, it is probably best to compare the current help files with the 2015 help files (which can be found in the links above).
Modelling of imposex (VDS)

There were also major changes in the assessment of imposex time series when submitted as individual VDS measurements. These included
Modelling the individual measurements, rather than annual indices, using a proportional odds model
Considering smooth changes in VDS levels over time
Considering change-point models in which VDS levels suddenly begin to change; the change-point is constrained to a year in the period 2004-2008, when the ban on the use of TBT was being implemented
Again, to undestand the changes properly, it is best to compare the current help files with the 2015 help file (which can be found in the links above).
[bookmark: _Toc486935837]2015 Assessment
Recent trends
The definition of recent trends was extended from 10 to 20 years for contaminants and biological effects (other than imposex) in biota. This brings it into line with the definition for contaminants in sediment and reflects the increasing use of year-skipping monitoring strategies, particularly for stations with low concentrations. A recent trend thus indicates a significant change in concentration in the period 1994 to 2013 (for the 2015 assessment).
Type and width of smoothing neighbourhood
Loess smoothers are used to model smooth changes in contaminant concentrations (for both biota and sediment) and biological effects measurements (apart from imposex) when there are 7+ years of data. The amount of smoothing is determined by the type and width of the neighbourhood of contaminant indices that is used to estimate each f(t) as t runs from 1 to T. Previously, a fixed-width neighbourhood (Fryer & Nicholson, 1999) was used with, for example, a width of 9 meaning that only the indices in the 9 years closest to t were used to estimate f(t). This worked well if there was annual monitoring, but was less effective when monitoring was less frequent since some parts of the fit were sometimes based on only a few indices. This has been replaced by a neighbourhood in which a fixed number of indices are used to estimate each f(t). For example, a neighbourhood of 9 now uses the 9 indices that are closest to t to estimate f(t). The fit in year tt can now be influenced by indices from years relatively distant to tt, but the fit is always based on the same number of indices. This type of neighbourhood was used in the original development of loess smoothers (Cleveland, 1979).
A greater range of neighbourhood widths are also now considered. Previously, widths of 7, 9, and 11 years were considered, with the final choice being the width giving the smallest Akaike’s Information Criterion corrected for small sample size (AICc). Now, widths of 7, 9, 11 up to T (if T is odd) or T+1 (if T is even) are considered, with the final choice again based on AICc. However, if there is no evidence of nonlinearity in the data (i.e. if the AICc of the linear model is lower than that of the best smoother) then the linear model f(t)=μ+βt is used instead.
Cleveland WS, 1979. Robust locally-weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829-836.

Fryer RJ & Nicholson MD, 1999. Using smoothers for comprehensive assessments of contaminant time series in marine biota. ICES Journal of Marine Science 56: 779-790.
[bookmark: _Toc486935838]Determinands
Persistent organic pollutants were introduced as a group of contaminants for biota.
Scope for growth and glutathionine transferase were introduced as biological effects for biota. For both, high values indicate healthy organisms. Glutathionine transferase is assessed in exactly the same way as chemical contaminants in biota, except that the lower confidence limit on the fitted value in the last monitoring year is used to assess status. For scope for growth, the annual indices are the median values of the scope for growth measurements in each year (there is no log transformation). This is because scope for growth can be negative (with negative values indicating bad status). The annual indices are then modelled in the same way as chemical contaminant indices, except that the lower confidence limit is used to assess status.
[bookmark: _Toc486935839]Assessment criteria
The ERLs for C1-naphthalene, C2-naphthalene, C1-phenanthrene, C2-phenanthrene and C1-dibenzothiophene were not used as it was not possible to find sufficient justification for them in the literature.
[bookmark: _Toc486935840]Assessing status of imposex
Previously, environmental status of imposex levels was assessed using the model fitted to the annual indices. The upper one-sided 95% confidence limit on the fitted value in the most recent monitoring year was compared to the available assessment criteria. However, in many time series, imposex levels have declined so rapidly that the linear models used to assess trends cannot track the change completely. The linear models correctly show evidence of a decline, but over-estimate imposex levels in the final monitoring year suggesting that environmental status is worse than it actually is. To overcome this, an alternative test of status is now used when there are individual measurements in the final monitoring year. A proportional odds model is fitted to the individual measurements and used to place an upper one-sided 95% confidence limit on the annual index in the final monitoring year. This confidence limit is then compared to the available assessment criteria.



[bookmark: _Toc486935841]Appendix 2
[bookmark: _Toc486935842]Factors for converting the basis of assessment concentrations in biota
	Species
	Common name
	% lipid weight
in muscle
	% lipid weight
in liver
	% dry weight
in soft body
	% lipid weight
in soft body

	Clupea harengus
	herring
	4.5
	   6.2
	
	

	Gadus morhua
	cod
	
	45  
	
	

	Lepidorhombus whiffiagonis
	megrim
	
	23  
	
	

	Limanda limanda
	common dab
	
	16  
	
	

	Melanogrammus aeglefinus
	haddock
	
	65  
	
	

	Merlangius merlangus
	whiting
	
	45  
	
	

	Merluccius merluccius
	hake
	
	44  
	
	

	Molva molva
	common ling
	
	54  
	
	

	Perca fluviatilis
	European perch
	0.7
	   0.7
	
	

	Platichthys flesus
	flounder
	
	13  
	
	

	Pleuronectes platessa
	plaice
	
	10  
	
	

	Zoarces vivparus
	eelpout
	0.6
	   0.7
	
	

	Crassostrea gigas
	Pacific oyster
	
	
	19
	1.8

	Mya arenaria
	softshell clam
	
	
	14
	0.6

	Mytilus edulis
	blue mussel
	
	
	17
	1.3

	Mytilus galloprovincialis
	Mediteranean mussel
	
	
	19
	2.0

	Ostrea edulis
	native oyster
	
	
	22
	1.8

	Nucella lapillus
	dog whelk
	
	
	34
	




[bookmark: _Toc486935843]Appendix 3
[bookmark: _Toc486935844]Pivot values for normalisation of metals in sediment
Metals
	
	Units
	Digestion*
	cx

	Cadmium
	mg kg-1
	Ps, Tot, Pw
	0.03

	Mercury
	mg kg-1
	Ps, Tot, Pw
	0

	Lead
	mg kg-1
	Ps, Pw
	2

	Lead
	mg kg-1
	Tot
	9

	Arsenic
	mg kg-1
	Ps
	3

	Arsenic
	mg kg-1
	Tot
	5

	Arsenic
	mg kg-1
	Pw
	1.5

	Chromium
	mg kg-1
	Ps, Tot
	13

	Chromium
	mg kg-1
	Pw
	10

	Copper
	mg kg-1
	Ps, Pw
	1

	Copper
	mg kg-1
	Tot
	3

	Nickel
	mg kg-1
	Ps, Pw
	2.5

	Nickel
	mg kg-1
	Tot
	4

	Zinc
	mg kg-1
	Ps, Pw
	8

	Zinc
	mg kg-1
	Tot
	13



Aluminium (normaliser)
	Units
	Digestion*
	nx
	nss

	%
	Ps
	0.4
	5.0

	%
	Tot
	1.4
	5.8

	%
	Pw
	0.3
	4.0


* Digestion codes: Pw (Partial weak), Ps (Partial strong), Tot (Total)



[bookmark: _Toc486935845]Appendix 4
[bookmark: _Toc486935846]Species area combinations used for cut-point estimation
The cut-points are estimated for the following combinations of species and area. To make the estimation problem more tractable, the data are further split by contracting party. The value of K is the highest VDS class considered having combined the upper classes that have few observations.
html table generated in R 3.3.1 by xtable 1.8-2 package Mon Oct 24 09:00:19 2016
	Species
	Region
	Country
	K

	Nucella lapillus
	Celtic Sea
	Ireland
	5

	Nucella lapillus
	Celtic Sea
	United Kingdom
	4

	Nucella lapillus
	Irish and Scottish West Coast
	Ireland
	6

	Nucella lapillus
	Irish and Scottish West Coast
	United Kingdom
	5

	Nucella lapillus
	Irish Sea
	Ireland
	5

	Nucella lapillus
	Irish Sea
	United Kingdom
	4

	Nucella lapillus
	Barents Sea
	Norway
	4

	Nucella lapillus
	Norwegian Trench
	Norway
	4

	Nucella lapillus
	Skaggerak
	Norway
	4

	Nucella lapillus
	Southern North Sea
	The Netherlands
	4

	Nucella lapillus
	Southern North Sea
	United Kingdom
	4

	Nucella lapillus
	Channel
	United Kingdom
	4

	Nucella lapillus
	Northern North Sea
	United Kingdom
	5

	Nassarius reticulatus
	Skaggerak
	Sweden
	4

	Nassarius reticulatus
	Southern North Sea
	The Netherlands
	1
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