Background Document concerning Techniques for the Management of Produced Water from Offshore Installations

OSPAR Commission 2002

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the "OSPAR Convention") was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain.

La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l'Irlande, l'Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d'Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l'Espagne.

© OSPAR Commission, 2002. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated.

© Commission OSPAR, 2002. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l'Editeur, sous réserve que l'origine de l'extrait soit clairement mentionnée.

ISBN 0 946956 87 1

Executive Summary	4
Récapitulatif	5
1. Introduction	6
2. References	67
Annex 1: Basis for figures in fact sheets	68
1 Model situations	68
2 Cost figures	69
2. Cost lightes	0)
Table 1 List of potential measures for the removal of heavy	
metals, dissolved oil, dispersed oil and offshore	
chemicals from produced water	8
Table 2 Examples of techniques that are currently available or	
emerging for the treatment of produced water from	
BAT/BEP solution	10
Diri/DLi Soluton	10
Table A - 1: Table down hole oil-water separation (DHS) -	
oil	11
Table A - 2: Down Hole Oil-Water Separation (DHS) - gas	13
Table A - 3: Mechanical water shut off	15
I able A - 4: Chemical Water Shut off Table A - 5: Stainlage steal typing flow lines ninclines	1/
Table A - 5. Stalliess steel tubling, now lines, pipelines	21
Table A = 0. Insulation of pipe lines	21
Table B - 1: Overhead vapour combustion (OVC)	23
Table B - 2: Fluid from condensor to production separator	25
Table B - 3: Alternative methods of gas drying	27
Table B - 4: Macro porous polymer extraction (MPPE)	•
(partial flow)	29
Table B - 5: Steam stripping (partial flow)	31
Table B - 0. High pressure water condensate separator Table B - 7: Methanol recovery unit	25 25
Table B - 8° L abyrinth type choke valve	37
Table B - 9: Twister supersonic separator	39
Table C - 1: Skimmer tank	41
Table C - 2: Produced water re-injection (PWRI)	43
Table C - 3: Dissolved gas/induced gas flotation (DGF/IGF)	45
Table C - 4: Plate interceptors (PPI/CPI)	4/
Table C - 5. Hydrocyclones Table C - 6: Macro porous polymer extraction (MPPF) (end	49
stream)	51
Table C - 7: Centrifuge	53
Table C - 8: Steam stripping (end flow)	55
Table C - 9: Adsorption filters	57
Table C - 10: Membrane filtration	59
Table C - 11: V-Tex	61
Table C - 12: Filter coalescer	63
1 able C - 13: Ctour process system	65

Executive Summary

This background document is related to OSPAR Recommendation 2001/1 for the Management of Produced Water from Offshore Installations. It contains brief descriptions of principles, basic elements and operational aspects of techniques which may be applied on offshore installations for the treatment of produced water.

An overview of various techniques for the removal of heavy metals, dissolved oil, dispersed oil and offshore chemicals from produced water is presented in Table 1. For a number of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution, fact sheets are presented. A short description of principles, basic elements, operational aspects and other factors relating to each type of these systems is presented in the tables A - 1 to C - 14. An overview of the techniques for which fact sheets have been prepared is presented in Table 2. This table contains examples of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution.

Although the physical and chemical principles of techniques described are generally applicable, the technical and economical features mentioned in the current version of this background document draw mainly on experience principally of operations in the southern North Sea which is predominantly a gas province with some oil and with relatively low volumes of produced water. The validity of the cost and technical data is therefore limited, and this should be taken into account when evaluating the applicability of techniques in other areas and in other circumstances.

It is the intention that this background document be revised to include data on applicability of techniques for a wider scope of offshore oil and gas (e.g. large oil fields in the central North Sea). Furthermore this background document is intended to be updated regularly in order to allow for the inclusion of descriptions of new techniques when these emerge.

Récapitulatif

Le présent document de fond concerne la Recommandation OSPAR 2001/1, sur la gestion de l'eau de production des installations offshore. Il décrit brièvement les principes, les éléments de base et les aspects opérationnels des techniques susceptibles d'être appliquées à bord des installations offshore pour le traitement de l'eau de production.

Une vue d'ensemble des diverses techniques d'élimination des métaux lourds, des hydrocarbures dissous, des hydrocarbures dispersés et des produits chimiques d'offshore provenant de l'eau de production est présentée au tableau 1. Pour plusieurs des techniques disponibles ou émergentes pour le traitement de l'eau de production des installations pétrolières et gazières en offshore, à titre de partie intégrante des BAT/BEP, des fiches de caractéristiques sont présentées. Une brève description des principes, des éléments de base, des aspects opérationnels et d'autres facteurs concernant chacun des types de ces systèmes est donnée aux tableaux A - 1 à C - 14. Une synthèse des techniques au titre desquelles des fiches de caractéristiques ont été dressées est présentée au tableau 2. Ce tableau donne des exemples des techniques disponibles ou émergentes pour le traitement de l'eau de production des installations pétrolières et gazières en offshore, à titre de partie des partie des présentées des techniques disponibles ou émergentes pour le traitement de l'eau de production des installations pétrolières et gazières en offshore, à titre de partie intégrante des BAT/BEP.

Bien que les principes physico-chimiques des techniques décrites soient généralement applicables, les caractéristiques techniques et économiques mentionnées dans la version actuelle du présent document de fond sont pour l'essentiel fondées sur l'expérience principalement acquise dans les opérations dans le sud de la mer du Nord, région principalement productrice de gaz, avec un peu de pétrole et des volumes relativement faibles d'eau de production. De ce fait même, la validité des données de coût et des données techniques est limitée, ce point devant être pris en compte lorsque l'on juge de l'applicabilité des techniques dans d'autres régions et dans d'autres circonstances.

Il est prévu de revenir sur ce document de fond pour y inclure des renseignements sur l'applicabilité des techniques dans d'autres régions pétrolières et gazières en offshore (par exemple, les grands champs pétrolifères du centre de la mer du Nord). De plus, il est prévu d'actualiser régulièrement le présent document de fond afin d'y intégrer des descriptions des nouvelles techniques au fur et à mesure qu'elles apparaîtront.

1. Introduction

The planning and management of operations at offshore installations should be in accordance with the integrated approach. A "tailor-made" combination of BAT and BEP should be applied for produced water management on offshore oil and gas installations in order to prevent and minimise pollution by oil and other substances as much as reasonably achievable. Whereas BAT is mainly focusing at application of techniques, BEP focuses on environmental control measures and strategies (management options). Reference is made to the definition of BAT and BEP in Appendix 1 of the OSPAR Convention.

Produced water treatment techniques may either be based on the reduction of volume of produced water or on the reduction of the concentration of substances in produced water. Furthermore, techniques may be applicable for oil and/or gas installations. Some techniques are well established and may be considered as current BAT, or present techniques. Some systems cannot be regarded as BAT as such, but may form part of a BAT solution when applied in a series of treatment systems. Other systems should be considered as emerging techniques, which are candidates for inclusion in the list of techniques that may form part of BAT solutions for produced water in the future.

The definition of BAT, including a mechanism of how a set of processes, facilities and methods of operation should be evaluated with a view to determine whether these constitute the best available techniques in general or in individual cases, is described in Appendix 1 of the OSPAR Convention.

An overview of various techniques which may be applied for the treatment of (produced) water is presented in Table 1. Not all these techniques are currently suitable for the treatment of produced water on offshore installations, for various reasons. For a number of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution, fact sheets are presented in the tables A - 1 to C - 14. An overview of the techniques for which fact sheets have been prepared is presented in Table 2. This table contains examples of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution.

The cost and technical data in tables A - 1 to C - 14 of this background document draw mainly on experience principally of operations in the southern North Sea which is predominantly a gas province with some oil and with relatively low volumes of produced water. Estimates of performance and cost (see Annex 1) are based on model scenarios that reflect operations in this basin and are unlikely to be applicable rigorously in other areas. It is the intention that the tables in this background document be revised to include data on the applicability of techniques for a wider scope of offshore oil and gas (e.g. large oil fields in the central North Sea), where applicable. Furthermore new tables on techniques mentioned in table 1, and not mentioned in tables A - 1 to C - 14 will be added in this background document in future updates of this document. The process of continuous updating will also allow for inclusion of (new) techniques when these emerge.

In view of the fact that the characteristics of produced water can be different from one installation to another and can vary widely both in the short and the long term at a single installation, the applicability of each type of system, or combination of systems, on a platform can only be evaluated on a case-by-case basis. Factors influencing the applicability of a system include, amongst other factors:

- the amount of produced water, which may increase in the course of the lifetime of an installation;
- the characteristics of the produced water flow;
- available deck space; and
- the need for and extent of retrofitting.

Moreover, techniques have intrinsic limitations and limitations relating to specific circumstances in which an offshore installation operates. The techniques in the tables are available techniques. A combination of techniques, selected on the basis of specific conditions and other factors, could form a "best available solution for the treatment of produced water" on an offshore installation or "best available package".

Irrespective of which method is considered and evaluated, it should be realised that the success of any method is dependent, amongst others, on the local environment in which it will be operated. The local reservoir conditions as well as the local operational conditions may strongly influence the effectiveness and operability of the method in question e.g. it cannot be concluded that a method, which has been operated successfully at one installation, may achieve the same results at another location.

Motion of floating installations may render gravity-separation devices less efficient under extreme conditions.

Physical/chemical aspects have not been taken into account: oil-water emulsions may break down more or less easily, depending on the composition of the oil and water. Again, this underlines the importance of case-by-case evaluations and the selection of treatment techniques for specific platforms should take this feature into account.

It is noted that the rows in the tables concerning the indication of costs of each technique contain estimates for the treatment of the indicated flows of produced water under certain circumstances only. Furthermore, it should be noted that the indicated (relative) costs stem from calculations based on predefined model situations. The definition of the model situations is applicable to a limited amount of offshore operations, it should be taken into account that these figures could vary from region to region or even from country to country. An evaluation of costs of application of a certain (series of) treatment technique(s) on a specific offshore installation, should be made on a case-by-case basis.

Cross-media effects and other impacts should also be considered when evaluating a system. Issues that may be covered by a cross-media effect evaluation include, but are not limited to, energy consumption, use of chemicals, waste production, fate and/or effect of substances in the effluent discharged that are not separated but may affect the treatment method and health and safety aspects.

Table 1List of potential measures for the removal of heavy metals, dissolved oil, dispersed oiland offshore chemicals from produced water

A. Preventive techniques	Membrane techniques
 Down-hole oil-water separation (DHWS) Down-hole gas-water separation (DHWS) Mechanical water shut-off Chemical water shut-off 	 Micro-filtration Ultra-filtration Nano-filtration Membrane separator
 B. Process integrated techniques Methanol recovery unit Glycol regeneration (incl. Drizo) 	 Reversed osmosis Pertraction Emulsion pertraction
 Overhead vapour combustion (OVC) Macro Porous Polymer Extraction (MPPE) (partial flow) 	 Electro-dialyse Membrane assisted affinity sorption (MAAS) Absorption / adsorption techniques Absorption filter
 High pressure condensate-water separation Steam stripping (glycol regeneration water) Insulation of pipelines Stainless steel lines and casks Alternative methods of gas drying (IFPEXOL etc.) Labyrinth type choke valve Glycol overheads backflow to separator Degassers 	 Granular active carbon Powder carbon Ion exchange Centrifugal absorption techniques Zeolites MPPE (end flow) MPPS Reusable oil adsorbent (RPA)
C. End of pipe techniques	Stripping techniques
 Conventional techniques Gas flotation (DGF/IGF) Flotation cells CPU compact flotation unit Plate separator (CPI/PPI) Hydrocyclone Axiflow cyclones Skimmer tank Centrifuge Disk stacked centrifuges Produced water re-injection (PWRI) Filter coalescer, incl. sand filters filters filled with oleophilic resins etc. Screen coalescers Pall coalescers In-line coalescing technology (incl. Mare's Tail and PECT-F) Performance enhancing coalescer fiber FU filter unit Integral plate packs in three phase separators 	 Steam stripping (end flow) Air stripping Gas stripping Evaporation Evaporation system Freezing concentration Oxidation techniques O₃ H₂O₂ Oxidation / neutralisation / de-watering (OND) Vertech KMnO₄ Natural air Electron beam Plasma Sonolysis Photo catalytic oxidation Low temperature hydro-thermal gasification (LTHG)
Biological techniques	
 Aerobic Bioreactor (anaerobic) Membrane bioreactor (MBR) Enzyme reactor Compost filter (glycol overhead) Bacterial treatment 	

Table 1 Cont.

Ot	Other techniques		mbination of techniques
•	Multimedia filtration/coalescers	•	Flocculation & hydrocyclone
•	Coagulation/flocculation	•	Cyclone & electro-coalescer
•	Electro-coagulation	•	Glycol regeneration and steam stripping
•	Electrolytic treatment		
•	Chalk precipitation		
•	Sulphide precipitation		
•	Grain reactor		
•	High gradient magnetic separation		
•	Pack of balls in PPI		
•	Monitoring en control		
•	Good operating practices		
•	Optimal application of CHARM		
•	Processes based on gas drying by adsorption		
•	Glycol cleaning		
•	Electrolysis		

Table 2Examples of techniques that are currently available or emerging for the treatment of
produced water from offshore oil and gas installations as part of a BAT/BEP solution

			Gas product	ion *	Oil production *		
	Table	Page	Present	Emerging	Present	Emerging	
Preventive							
Downhole water separation - oil	Table A - 1	11			Х		
Downhole water separation - gas	Table A - 2	13		X			
Mechanical water shut off	Table A - 3	15	Х		Х		
Chemical water shut off	Table A - 4	17	Х		Х		
Stainless steel tubing, flow lines, pipelines	Table A - 5	19	Х		Х		
Insulation of pipelines	Table A - 6	21	Х				
Process integrated, including split							
stream treatment							
Overhead Vapour Combustion (OVC)	Table B - 1	23	Х				
Fluid from condensor to production	Table B - 2	25	Х				
separator							
Alternative methods of gas drying	Table B - 3	27	Х				
MPPE (split stream)	Table B - 4	29	Х				
Steam stripping, split stream	Table B - 5	31	Х				
HP water condensate separator	Table B - 6	33	Х				
Methanol recovery unit	Table B - 7	35	Х				
Labyrinth type choke valve	Table B - 8	37		X			
End of pipe							
Skimmer tank	Table C - 1	41	X		X		
Produced water re-injection (PWRI)	Table C - 2	43	X		X		
DGF/IGF	Table C - 3	45	X		X		
PPI / CPI (gravitation separation)	Table C - 4	47	X		X		
Hydrocyclones	Table C - 5	49	X		X		
MPPE (end stream)	Table C - 6	51	X			X	
Centrifuge	Table C - 7	53	X				
Steam stripping, end stream	Table C - 8	55	Х				
Adsorption filter	Table C - 9	57	Х				
Membrane filtration	Table C - 10	59		X		X	
V-Tex	Table C - 11	61		X	Х		
Filter coalescer	Table C - 12	63		X		Х	
CTour	Table C - 13	65		X			

PPI / CPI = Parallel Plate Interceptor / Corrugated Plate Interceptor (gravitation separation)

DGF / IGF = Dissolved Gas Flotation / Induced Gas Flotation

HP = High Pressure

MPPE = Macro Porous Polymer Extraction

* Although a distinction is made in this table between oil and gas producing installations, the limits of applicability of specific techniques may not be as rigid. These limits are, amongst other factors, dependent on the composition of the oil / condensate / gas and water produced.

Table A - 1: Tal	ble down hole oil-wate	r separa	tion (DHS) - oil								
Principle	DHS for oil is a technique in which the production of an oil-water mix at the bottom of a production well is separated by a hydrocyclone. Separated water is injected into a suitable underground zone and the remaining oil-water mix is pumped to the surface. In this way, the amount of produced water can be reduced by more than 50%. This will result in a higher oil production, a relatively low water production and the use of less chemicals. The discharge and treatment of produced water is considerably reduced or the water injection installation could be considerably decreased.										
Process diagram											
	oil										
	production lines										
	casing (cemented										
		or external packer)									
			production	n pump							
			shaft seali	ng							
			e-motor								
			shaft seali	ng							
			injection p	ump							
			hydrocycle	oonseparator							
		production	zone	oil +	water						
			packer								
		injection z	zone	wa	ater						
Basic elements	Pump(s), hydrocyclone(s),	e-motor,	seals, instrumentation and char	iges in the	e well (deepening of well an	d /or					
Dasic cicilicitis	additional perforations and	l packers)	1	1							
Suitable for the removal of:	Heavy metals	R [%]	Production chemicals	R [%]	Oil	R [%]					
	■ Cadmium Zinc	50 50	\Box Methanol		Dissolved oil BTEY	50 50					
R = removal	Lead	50	Corrosion inhibitors	50	Benzene	50					
efficiency	■ Mercury	50	■ Anti-scale solutions	50	PAHs	50					
	■ Nickel	50	Demulsifiers	35	Dispersed oil	R [%]					
					■ Oil	50					
	Romarks										
	The 50% reduction is base	d on a 50°	% effectiveness of the hydrocy	clone in th	ne well. Less offshore chem	icals need					
	to be added, although the u	use of den	nulsifiers is usually not proport	onately s	maller.						
Technical details	Type of installation				Oil						
	Produced water volume (d Required area for injection	esign)	r treatment installation		1/5 m ⁻ /n						
	Mass of equipment for inje	ection vs.	water treatment installation		smaller						
Critical	The availability of a suitab	ole water i	njection zone, which allows for	fracturin	g, as well as an appropriate	well					
operational	configuration is a prerequi	site for th	e application of this technique.	Produced	solid materials are separate or oil > 20 °API and a water	d largely $cut > 50\%$					
parameters	The composition of the inj	ection wa	ter must be compatible with the	e injectior	zone. Production and injec	tion zones					
	must be sufficiently isolate	ed. The di	ameter of the casings must be la	arge enou	gh to allow for a DHS syste	m. DHS is					
Onerational	Results presented are varia	al wells.	60% of the test installations pr	duce mo	re oil than previous installat	ions and					
reliability	one third of the failures wa	as the resu	ilt of plugging of the injection z	sone. Som	ie installations have been op	erational					
·	for more than 2 years, whi	le others f	failed within a few days. The lit	fe span of	a DHS installation is estimated	ated to be					
	nall that of a standard pur	np installa	tion.								

Indication of costs									
	Costs	In	vestment c	osts (€]	CAPEX)	Explo	itation [€ /	costs (C vear]	OPEX)
		pre	sent	-	new	present		new	
	gas platform, small	n	n.a.		n.a.	n.a.		n.a.	
	gas platform, large	n.a.		n.a.	n.a.	,		n.a.	
	oil platform	2 45	0 000		1 290 000	959 400)	52	23 000
	Cost/kg removed	Gas p	latform, sn	Gas platfo	rm, large		Oil platform		
		Existing	g Ne	W	Existing	New	Exi	sting	New
		[€/kg]	[€/k	g]	[€/kg]	[€/kg]	[€	/kg]	[€/kg]
	dissolved oil						1 -	460	796
	dispersed oil	n.a.	n.a	ι.	n.a.	n.a.	8	88	48
	zinc equivalents						41	261	22 494
	Remarks:			_					
	Costs were presented for one DF 150 m ³ /h by 50%, a minimum or existing offshore installation is b workover of a DHS installation existing offshore installation we producing on maximum capacity water treatment system.	one DHS installation of 50 m ³ /h. In order to reduce a nominal water production of imum of 3 DHS installations would be required. Depreciation in the OPEX for an ition is based on deepening an existing well and installing a liner ad. \in 2 MM. Costs for a allation were estimated at \in 550 000. Cuts on costs for reduced energy consumption on an ition were not taken into account, neither was additional production of wells that are not capacity. For new offshore installations, large savings may be possible regarding the							
Cross media effects	Air	Dec dies	creased ene sel fuel is u	rgy u sed.	se leads to decre	ased air emis	sions,	especiall	y when
	Energy	Dec deci inje	Decreased energy use for water transport pumps. Possible increased or decreased energy use for the pumps in the well, depending on the required injection pressure.						
	Added chemicals	Pos	Possibly scale inhibitor or acid to stimulate the injection zone.						
	Waste	The the (NC	decreased water treat DRM).	wate nent	r through flow si installation. The	should result in a decrease in sludge in e sludge is often slightly radioactive			
Other impacts	Safety	Slig	sht increase	in vi	ew of increased	number of w	orkove	ers.	
	Maintenance	Mai will ever	intenance of definitely ry 1,5 years	f the decre	water treatment ease. Replacement	installation for the DHS	or exis S instal	ting insta lation or	allations 1 average
Practical	General	l				Offsh	ore		
experience	The results to date are very varia considered very promising but is development stage.	able. The s still in tl	technique i he	s	DHWS is mostl water treatment	y used onsho capacity is li	re, in s mited.	ituations	s where the
Conclusion	D BAT				Emerging Candidate for BAT, very promising technique				
Literature source	[1]								

Table A - 2: Do	wn hole oil-water sepa	ration (I	DHS) - gas				
Principle		```					
Principle Process diagram		productio injectio	n zone	n lines g (cemented uction pump sealing tor sealing ion pump xcyclone sepa	or external packer arator oil + water water)	
Basic elements	Pump(s), hydrocyclone(s), e-motor with variable number of revolutions, seals, instrumentation and changes in the well (deepening of well and /or additional perforations and peckers)						
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] 50-100 50-100 50-100 50-100 50-100	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] <75% <75% 100 50-100 15-35	Oil Dissolved BTEX Benzene PAHs Dispersed oi	oil 	R [%] 50-100 50-100 50-100 50-100 R [%]
	<i>Remarks:</i> The 50-100% removal effi production. E.g.: if 50% of total water production fror proportionate. Lower salt of of demulsifiers and higher use of methanol/glycol (hy the well pressure).	ciency is a f the form n this wel concentrat dispersed rdrate inhi	applicable to the amount of for ation water production $(1,4 \text{ m}^3)$ l by 75% x 50% x 1,4 m ³ = 0,5 tions lead to more oil/water em /dissolved oil concentrations. bitors). A large part of the con	rmation wa 3/h) stems f 53 m ³ /h. Re nulsions, in Lower salt ndensation	Oil ater, which is 2 from one well, eduction of che a some cases lea concentrations water will be p	5-50% of the DHWS will r micals is less ading to incre s will lead to i roduced (dep	50-100 total water educe the than ased use ncreased ending on
Technical details	Type of installation Produced water volume (d Required area for injection Mass of equipment for inje	esign) 1 vs. water ection vs.	treatment installation water treatment installation	Gas 1 1 m ³ /h n.a. n.a.		Gas 2 6 m ³ /h less lower	
Critical operational parameters	DHS is only suitable for gr condensate) injection and injection water must be co must be adequately isolate production zone.	as wells w for fractur mpatible d. Depres	vith little condensate productio ring and suitable (existing) wel with the injection zone (swellin surising the well in order to pu	n. Presence Il configura ng of clay Ill the injec	e of a suitable l ations is require etc.). Production etion pump may	layer for wate ed. Compositi on and injection y cause damag	r (and on of on zones ge to the
Operational reliability	From the few references it sand or clay particles, which	is eviden ch could p	t that results vary. Problems m plug the injection zone.	ay be expe	ected when pro	duced water c	ontains

Indication of costs									
	Costs	Inves	stment costs [€]	(CAP)	EX)	Explo	itation co [€ / ye	osts (C ear]	OPEX)
		preser	nt	ne	ew	present	t -	-	new
	gas platform, small	n.a.		n.a.		n.a.			n.a.
	gas platform, large	2 550 0	000	1 39	000 000	890 600	0 44		44 200
	oil platform	n.a.		n	1.a.	n.a.			n.a.
	Cost/kg removed	Gas plat	form, small		Gas platfor	rm, large	Oil platform		
		Existing	New		Existing	New	Existi	ing	New
		[€/kg]	[€/kg]		[€/kg]	[€/kg]	[€/kg	g]	[€/kg]
	dissolved oil	n.c.	n.c.		1 320	659	n.a		n.a.
	dispersed oil				4 842	2 415			
	zinc equivalents				64 438	32 635			
	Costs have been included for a DHS installation of 0,7 m ³ /h, although an installation for 2 m ³ /h would cost little extra. In order to achieve a 75% reduction of formation water, each well would have to be fitted with a DHS installation. Depreciation in the OPEX for an existing offshore installation is based on deepening an existing well and installing a liner ad. \notin 2 MM. Costs for a workover of a DHWS installation were estimated at \notin 4 000 000. The reduction of condensate production was not taken into account.								
Cross media effects	Air	Higher using	r energy con diesel fuel.	sumpt	tion will inc	rease air emis	ssions, es	special	lly when
	Energy	Energy injecti	Energy consumption for the pumps in the well depends on the required injection pressure and the amount of water.						
	Added chemicals	Possib	Possibly scale inhibitor or acid to stimulate the injection zone.						
	Waste	The de the wa (NOR)	The decreased water through flow should result in a decrease in sludge in the water treatment installation. The sludge is often slightly radioactive (NORM).						
Other impacts	Safety	Slight	increase in	view o	of increased	number of w	orkovers		
	Maintenance	Mainte will de	enance of the	e wate rease.	er treatment i Replacemer	installation for the DHS	or existin S installat	ng insta tion ev	allations very 2 years.
Practical	Genera	1				Offsh	ore		
experience	There are few references. The te of development.	echnique is in	n the phase	It is first. prefe	expected the Currently, erred.	at this technion pumping of w	que will water to t	be test the sur	ed onshore face is
Conclusion	D BAT			E	Emerging Ca	ndidate for E	BAT		
Literature source	[1]								

Table A - 3: Me	chanical water shut-of	f								
Principle	When water breakthrough occurs in oil or gas production, production zones with high water cuts can be sealed by installing mechanical barriers. This may, dependent on well configuration, be achieved by mechanical or inflatable plugs, cementing, placement of a patch (expansion pipe) or pack-off, possibly in combination with chemical treatment (see table on Chemical water shut off). If total sealing of the water production is not desired, a regulating mechanism or restriction plate may be placed in the well.									
Process diagram	production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone production zone (de-watered or fault in connection with water zone)									
Basic elements	Mechanical plugs, cement, pack-off etc. Preferably, the process of completion of a well takes into account the possibility of sealing of zones which may									
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] 50-75 50-75 50-75 50-75 50-75 50-75	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] Oil <55 Dissolved oil <55 BTEX 50-75 Benzene 50-75 PAHs 15-35 Dispersed oil Oil Oil		R [%] 50-75 50-75 50-75 50-75 50-75 50-75 50-75 50-75 50-75				
	<i>Remarks:</i> The effectiveness of a seal e.g. the sealing around the concentrations lead to mor dispersed/dissolved oil cor (hydrate inhibitors). Forma	ing is dep casing or e oil/wate ncentratio ation wate	pendent on successfully installing liner. Reduction of chemicals er emulsions, in some cases lead ns. Lower salt concentrations w er will inevitably be produced in	ng the plug an is less than pr ding to increa vill lead to inc n view of natu	d the way the well oportionate. Lowe sed use of demulsi creased use of meth ural water saturatio	was completed, salt fiers and higher anol/glycol n (conate water).				
Technical details	Type of installation Produced water volume (d Area required for water tre Mass of equipment for wat	esign) eatment ter treatm	ent installation	Gas 1 1 m ³ /h less lower	Gas 2 6 m ³ /h less lower	Oil 1 175 m ³ /h less lower				
Critical operational parameters	Study is required to identif Mechanical water shut off more difficult and more ex reduce the effect of the sea lines. Inflatable plugs and production loss.	fy the sou is mainly pensive. lling. Proo some pate	rce of water production and red applicable for multi-layer rese Possible leakage of existing sea duction lines must be pulled ou ches are resistant to limited pres	luce the risk or rvoirs. In hor alings around t unless inflat ssures. Somet	of plugging the pro- izontal wells, this t casing (cement or able plugs can be p imes water sealing	duction. echnique is often packer) may placed via these leads to				
Operational reliability	The reliability of mechanic Dependent on the well cor plugs and pack-offs are les because of salt deposition	cal and ce figuration ss reliable in tubings	ment plugs is modest, absolute n, the rate of success is 40-70% (failure by high pressure or dates, erosion and corrosion may oc	certainty abo (closer to 40 mage). When ccur.	out closing in water % for gas installati a patch doesn't sea	is rare. ons). Inflatable al well, e.g.				

Indication of costs								
	Costs	Investme	nt costs (([€]	CAPEX)	Exploitation costs (OPE [€ / year]			PEX)
		present		new	presen	t	new	
	gas platform, small	200 000-800 0	00	n.a.	50 800-209	200	n.a.	
	gas platform, large	200 000-800 0	00	n.a.	48 800-207	7 200		n.a.
	oil platform	170 000-300 0	00	n.a.	20 900-45	200		n.a.
	Cost/kg removed	Gas platform	n, small	Gas platfo	rm, large		Oil pla	tform
		Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]	Exi [€,	sting /kg]	New [€/kg]
	dissolved oil	1 374-5 660	n.a.	116-491	n.a.	106	-229	n.a.
	dispersed oil	2 062-8 490		424-1 802		64	-13.8	
	zinc equivalents	39 564- 162 928		5 642- 23 954		2 986	6-6 457	
 The technique is only applied on existing offshore installations, although provisions can be made on new installations. Including costs of removal and replacement of production lines with drilling rig (gas). On oil installations installation is combined with the replacement of pumps (ESP), therefore only additional costs should be calculated. Lower costs are for use of a platform rig. Possible costs for loggings should be calculated. The KEw is difficult to assess, since the costs vary and production may reduce. KEw may be calculated b should be raised with risk. The costs model situation is presented for one well and a reduction of 62,5% of formation water. In case t 								new ations, the l be l. ted but case that the
	 amount of formation is 75% and 62,5% x 50% x 1,4 m³/ł production by 50% (for one production. Costs for horizontal wells ar Possible slight savings in en 	o or 50% of the tota h respectively. Oil well 50% of 30 m ² re usually higher. hergy costs were no	l water pr platforms /h). A tot t calculate	oduction, the re also require ext al of 5 wells is r ed. neither was r	ductions are of ra costs for re equired for s	62,5% educing imilar r tional c	x 75% x g 1/5 of t reservoir	0,2 m ³ /h he water and production.
Cross media effects	Air	Less energ fuel is used	y consum d.	ption will reduc	e air emissio	ns, esp	ecially w	when diesel
	Energy	Reduced e	nergy cor	sumption for w	ater pumps ef	ic.		
	Added chemicals	Reduced u corrosion i	se of chei inhibitors,	nicals for water , demulsifier.	treatment e.g	g. scale	inhibito	rs,
	Waste	Less (ofter water prod	n slight ra luction.	dioactive, NOR	M) sludge de	positio	n in viev	v of reduced
Other impacts	Safety	None.						
	Maintenance	Maintenan no mainter	ce of wat	er treatment faci nechanical seal	lities will de needed.	finitely	reduce.	In principle
Practical	Gene	ral			Offsl	iore		
experience	Mechanical water shut off is a	applied frequently.		These technique	es can be app	lied of	shore.	
Conclusion	BAT	· · · ·		Emerging Ca	indidate for E	BAT		
Literature source	[1]							

Table A - 4: Ch	emical water shut off								
Principle	When water breakthrough occurs with oil or gas production, production zones with high water cuts can be sealed by the placement of special polymers. By adding cross-linkers, gel is formed which blocks water. Chemical sealing is often applied in higher production zones. The advantage in comparison with mechanical shut off is that the full diameter of the well remains available for any well repairs and the chance for flow behind the tubing is less, since the gel perforates the formation deeply. The disadvantage is that the gel normally cannot be removed anymore when production proves less. Sometimes polymers are injected to reduce the relative permeability for water, whereas the permeability for gas remains the same.								
Process diagram	pro	duction zor duction zon duction zon		oil (orga oil (orga oil (orga 	ıs) + wat ıs) + wat ırying zol	er er ne			
Basic elements	(de-watered or fault in connection with water zone) injected gel plug Polymer, cross-linker, catalyst, filler. There are many types of anorganic and bio-polymers. In gas wells, the gel is often placed by a coiled tubing. In oil wells, a workover, or production lines may be appropriate. Preferably, the process of completion of a well takes into account the possibility of sealing zones which may produce large								
	amounts of water, e.g. by	cementing	g tubings.				-		
Suitable for the	Heavy metals	R [%]	Production chemicals	R [%]	Oil		R [%]		
removal of:	Cadmium	50-75	Methanol	<55	🔳 Di	ssolved oil	50		
	■ Zinc	50-75	Glycols	<55	■ B7	TEX	50		
R = removal	■ Lead	50-75	Corrosion inhibitors	50-75	Be	nzene	50		
efficiency		50-75		50-75			50		
		50-75	Anti-scale solutions	50-75	$\blacksquare PP$	AHS	50		
	Nickel	50-75	Demulsifiers	50-75	Dispe	ersed oil	R [%]		
					Oi	1	50		
	<i>Remarks:</i> The effectiveness of sealin oil or gas and water. Redu oil/water emulsions, in sor concentrations. Lower salt Formation water will inev	ng is depe ction of c me cases l concentr itably be j	ndent on successful placement of hemicals is less than proportion eading to increased use of demi ations will lead to increased use produced in view of natural wat	of the gel a nate. Lower ulsifiers an e of methar er saturatio	and of t r salt co nd high- nol/glyo on (con	he physical intera oncentrations lead er dispersed/diss col (hydrate inhib ate water).	action between 1 to more olved oil pitors).		
Technical details	Type of installation			Gas	1	Gas 2	Oil 1		
	Produced water volume (d	esign)		$1 \text{ m}^{3/2}$	'n	6 m ³ /h	175 m ³ /h		
	Area required for water tre	eatment ir	stallation	less		less	less		
	Mass of equipment for wa	ter treatm	ent installation	lowe	r	lower	lower		
Critical operational parameters	Study is required to identi- maximum allowable temp for multi-layer reservoirs (horizontal wells. For the se	fy the sou erature is (water sho ealing of	rce of water production and red 150 °C (dependent on type of g buld no be able to flow around t fractures, large amounts of activ	luce the ris gel). Chemi he blockad vated gel a	k of plu ical wa le) but re need	ugging the produ ter shut off is ma it can also be app ed, followed by §	ction. The inly applicable lied in gel and filler.		
Operational reliability	The reliability of chemical communication between z permeability is that they n	l plugging ones, the eed not to	s is modest, absolute certainty a rate of success is 30-70%. Adva be injected in a specific zone,	bout closin antage of p which incre	ng-in w olymer eases th	ater is rare. Depe rs that reduce relate re reliability of se	ndent on the ative ealing.		

Indication of									
costs	Casta	Investm	ant agat		7)	Evente	itation	agata (C	DEV)
	Costs	nivestin	ent cost: [€]	CAFEZ	x)	Expic	/ €]	vear]	JELA)
		present		new	τ	presen	t	<u></u>	new
	gas platform, small	170 000-480 0	000	n.a.		42 900-124 700			n.a.
	gas platform, large	170 000-480 0	000	n.a.		40 900-122	2 700		n.a.
	oil platform	150 000-520 0	000	n.a.		15 600-113	3 300		n.a.
	Cost/kg removed	Gas platfor	Gas platform, small Gas platf			orm, large		Oil pla	tform
		Existing	New	Ez	kisting	New	Exi	sting	New
		[€/kg]	[€/kg] ['	€/kg]	[€/kg]	[€	/kg]	[€/kg]
	dissolved oil	1 161-3 374	n.a.	9	7-291	n.a.	79	-575	n.a.
	dispersed oil	1 741-5 061		350	5-1 067		4,1	7-34	
	zinc equivalents	33 411- 97 118		4	728- 4 185		16	229- 186	
	Remarks:								
	- The technique is only applie	d on existing offs	hore ins	tallations	, althoug	h provisions of	can be	made on	new
	KEw, costs are based on 1 0	00-1 500 €/m ³ ge	l).	or these p	510 1 1 51 01	is should not		u wiich	calculating
	- CAPEX includes coiled tubi	ing (gas). On oil i	nstallatio	ons, polyr	ner injec	tion is combi	ned wi	th the re	placement
	of pumps (ESP); therefore only additional costs should be calculated. A platform rig requires lower costs that iack-up rig and sealing of fractures (high volume needed). Possible costs for loggings should be calculated								costs than a culated.
	- The KEw is difficult to asse should be raised with risk.	ess, since the cost	s vary ar	d produc	tion may	reduce. KEw	v may t	e calcul	ated but
	- Costs for model situation pla forms 75% or 50%, the redu oil installation also costs for 5 wells needed if reservoir a	atforms are for 1 v action is 62,5% x 7 1 well to reduce nd production are	well, nee 75% x 0 1/5 of th similar)	ded to real $2 \text{ m}^3/\text{h}$ are water p	duce 62, nd 62,5% roductio	5% formation 5 x 50% x 1,4 n with 50% (5	water. m ³ /h ro 50% of	If formation of the spectrum o	ation water ely, for an) (a total of
	- Costs for sealing of fractures	s are usually high	in view	of large of	uantity (of gel needed			
	- Possible slight savings in en	ergy costs were n	ot calcul	ated, neit	her was	possible addi	tional c	oil or gas	production.
Cross media effects	Air	Less ener fuel is use	gy consi ed.	umption v	vill redu	ce air emissio	ns, esp	ecially v	vhen diesel
	Energy	Reduced	energy c	onsumpti	on for w	ater pumps et	tc.		
	Added chemicals	Reduced corrosion	use of cl inhibito	nemicals rs, demul	for water sifier.	treatment e.g	g. scale	inhibito	rs,
	Waste	Less (ofte water pro	en slight duction.	radioacti	ve, NOR	M) sludge de	positio	n in viev	w of reduced
Other impacts	Safety	None.							
	Maintenance	Maintena no mainte	nce of w enance o	ater treat	ment fac al seal ne	ilities will de eeded.	finitely	reduce.	In principle
Practical	Gener	ral				Offsl	nore		
experience	Chemical water shut off is app	plied frequently.		These	techniqu	es can be app	lied of	shore.	
Conclusion	BAT			□ Eme	erging C	andidate for H	BAT		
Literature source	[1]								

Table A - 5: Sta	inless steel tubing, flow	w lines,	pipelines								
Principle	In the presence of new water during the transport of on and gas where H_2s and/of CO_2 are present, consistint could occur where carbon steel is used. Depending on the degree of corrosion (depending on the temperature, the CO_2 level, the pressure of the medium and the planned life span) a combination can be used of control measures such as the development of corrosion margins, the use of corrosion inhibitors or the use of corrosion resistant material. The use of corrosion inhibitors in combination with a high pressure step can lead to formation of stable oil-water emulsions with a small particle size that are difficult to separate. The use of corrosion resistant material, possibly in combination with high pressure separation, requires little or no use of corrosion inhibitors, which leads to a decrease of aromatic hydrocarbons in overboard water. For low pressure lines, synthetic materials (GRE/GRP) may be used, but for high pressure lines and pipelines duplex steel (>18% Cr / 5% Ni) or (Inconel) coating is used. Stainless steel vessels may be used or vessels may be coated with a protective coating.										
Process diagram	Not applicable	outing.									
Basic elements											
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Domulaifors 	R [%]	Oil ■ Disso ■ BTEX ■ Benze ■ PAHs	lved oil (ene	R [%] * * * *				
				50-100	Disperse	ed oil	R [%]				
	<i>Remarks:</i> *: The removal efficiency systems installed and whe removal efficiency may re	for dissol ther high	ved and dispersed oil depen pressure oil water separation siderably.	nds, amongst o n is applied. If	thers, on p	produced water there is in injected,	reatment the specific				
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	lesign)	Gas 1 1 m ³ /h n.a. n.a.	Gas 2 6 m ³ /h n.a. n.a.	1	Oil 175 m n.a. 	1 ³ /h				
Critical operational parameters	Operations and control of injected. Corrosion increas be reduced considerably w (possibly separated system	the oil co ses expon when the v ns).	ntent in produced water are entially with raising temper- vater treatment facilities are	enhanced whe ature. The nee operated in a	en less corr d for use c way so as	rosion inhibitors of corrosion inhil to prevent oxyge	are bitors may en entering				
Operational reliability	The resistance of stainless	steel aga	inst corrosion and erosion is	s better and the	erefore the	life span is long	er.				

Indication of costs	maintenance. For a gas pipeline with a capacity of 1,5 MM Nm³/d, these savings total \in 34 000 per year. With a life span of 15 years, this totals \in 510 000. If no corrosion inhibitor injection system is needed, a further saving of investments of \in 40 000 is achieved. Additional investments for stainless steel in comparison with carbon steel pipelines amounts approximately to \in 375 per meter (for 10" and 12" \in 500/m and \in 750 respectively). The break 						
Cross media	Air	None.					
enects	Energy	None.					
	Added chemicals	Reduction of corrosion inhibitors, for gas 10 l/MM Nm ³ and water approximately 100 mg/l.					
	Waste	None.					
Other impacts	Safety	Safer, since less dru (satellite platforms) problems.	and because of reduced leakage and corrosion				
	Maintenance						
Practical	General		Offshore				
experience			Corrosion resistant materials are frequently applied for (pipe)lines and vessels.				
Conclusion	BAT		Emerging Candidate for BAT				
Literature source	[1]						

Table A - 6: Ins	sulation of pipe lines								
Table A - 6: Ins Principle Process diagram	 When gas is transported under high pressure from a satellite to a treatment facility on a central installation, there is a danger of hydrate formation as the mixture of gas and water cools down. This may lead to blockages in the pipeline. There are three different methods available to prevent this problem: Injection of methanol or glycol (MEG/TEG), or other chemicals that may, or may not be retrieved and regenerated on the central platform; Maintaining the temperature as much as possible by burying and possibly adding insulation to the pipeline; Lowering the pipeline pressure, in order to allow for operation outside the hydrate-regime. This may be possible when sufficient compression facilities are installed on the central platform, but usually this is not desired since this reduces the pipeline capacity considerably and energy is wasted. The only alternative for continuous injection of chemicals is therefore insulation of the pipeline. This is only effective when production is continuous and a minimum production is maintained. During start up and when producing below the required minimum, methanol will need to be injected in order to prevent the formation of hydrates. 								
Basic elements	Insulated and/or buried pip	pelines.							
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] >90 100	Oil Dissolved BTEX Benzene PAHs Dispersed oi	oil I	R [%] * * * R [%]		
	<i>Remarks:</i> For start up operations and required. This will be disc *: When glycol is used, the from the condensor of the	l producti harged wi e insulatio regenerat	on below the required minimu th produced water. on renders re-feeding of water or unnecessary.	m, injection with a high	n of small amor	unts of metha	unol is arbons		
Technical details	Platform Produced water volume (d Pipeline length Pipeline diameter	esign)	Gas 1 1 m ³ /h 3-10 km 8"-10"	Ga 6 r 3-1 14"	as 2 n ³ /h 5 km - 16"	O n.a	il a.		
Critical operational parameters	The formation of hydrates 100 bar/20 °C. Salt in proc maintained in order to kee pressure, methanol injection	may occu duced wat p the pipe on will be	IT at a pressure/temperature rel er will reduce the formation of line at a certain temperature. V reduced.	ation of ap f hydrates. With the ago	proximately 25 A minimum pro eing of the field	bar/4 °C or oduction need and reduced	ds to be d reservoir		
Operational reliability	The use of methanol will s is low.	still be nee	eded during start up operations	s. Insulation	is less effectiv	ve when the t	hroughput		

Indication of costs	A considerable saving is achieved by the elimination of a methanol recovery unit or glycol regenerator. Savings due to reduced methanol use may vary from 5% to 30% of the amount of produced water. With decreasing pressure, this percentage is lower until no injection is needed at a pipeline pressure of 25 bar. Air No emissions due to regeneration of methanol or glycol.						
Cross media	Air	No emissions due t	o regeneration of methanol or glycol.				
	Energy	No energy consumption for regeneration of methanol or glycol.					
	Added chemicals	Insulation prevents the continuous injection and regeneration of methanol/glycol. No regeneration loss from methanol/glycol, no loss of methanol to gas and condensate phase or use of other chemicals.					
	Waste	None.					
Other impacts	Safety	No risks due to trar	sfer of large amounts of methanol.				
	Maintenance	No maintenance on	methanol or glycol regeneration systems.				
Practical	General		Offshore				
experience	Insulation and burying the pipeline i the oil and gas industry.	s used frequently in	Insulation is also applied offshore.				
Conclusion	BAT		Emerging Candidate for BAT				
Literature source	[1]						

Table B - 1: Ov	erhead vapour combustic	on (OV	(C)							
Principle	Application of OVC elimina glycol regeneration unit. OV under controlled conditions	ates the VC does in the bu	most important source of not condense the vapours rner of the glycol regenera	BTEX in produ from regenerati ator.	uced water on but the	r, i.e. condensat se vapours are	e from the incinerated			
Process diagram	glycol excess gas overhead vapours niĝh BTEX-content glycol trip gas									
Basic elements	Special burner (suitable for wet gas) with 'fire way' and higher stack.									
Suitable for the removal of: R = removal efficiency	Heavy metals F Cadmium Zinc Lead Mercury Nickel	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] > 99% * **	Oil Dissol BTEX Benze PAHs Disperse	lved oil C me d oil	R [%] >99 >99 >99 >99 R [%] >99**			
	Remarks: Almost all hydrocarbons, inc *: When used. **: The hydrophobic part is	cluding s	trip gas, is burned.		<u> </u>		I			
Technical details	 **: The hydrophobic part is removed Platform Produced water volume (design) Partial flow (design) Required area (extra) (LxWxH) Mass (extra) 		Gas 1 (small) 1 m ³ /h 0,05 m ³ /h negligible negligible	Gas 2 (larg 6 m ³ /h 0,1 m ³ /h negligible negligible	e) e	Oil 1 n.a.				
Critical operational parameters	The design should take due a higher stack and temperature existing platform. A shut do shut down for other reasons	account o e regulati wn perio as well.	of possible methanol injection with air are the most ir d of 1-2 weeks is required	tion. Installation nportant features . This renders hi	of a new ' s when OV gh costs ui	fire way' / burn 'C is installed of nless the installa	er, a n an ation is			
Operational reliability	As reliable as regular regene fluctuations, but may be affe	eration sy ected if g	stems. The functioning of as contains glycol due to r	OVC is not affer malfunctioning o	ected very	much by gas qu tion.	ality			

Indication of											
costs	Costs	Inv	estment c	nsts (C	TAPEX)	Explo	itation	costs (C	PFX)		
	Costs	IIIV	estinent e)363 (C €]	JAI LA)	LAPIC	/€]	year]	n LA)		
		pres	ent	-	new	presen	t	new			
	gas platform, small	308	000		20 000	87 300		3 300			
	gas platform, large	381	000		0	108 60	0		0		
	oil platform	n.	a.		n.a.	n.a.			n.a.		
	Cost/kg removed	Gas pl	atform, sn	all	Gas platfor	rm, large	Oil platform		tform		
		Existing [€/kg]	Ne [€/k	w g]	Existing [€/kg]	New [€/kg]	Exi [€	sting /kg]	New [€/kg]		
	benzene aliphatic hydrocarbons zinc equivalents	532	20)	94	0	n	ı.a.	n.a.		
	<i>Remarks:</i> For smaller new installations (< 3 MM m ³ /day) the CAPEX is approximately equal. For larger installations, the costs are lower since less equipment is needed (no condensor, gas scrubber, pump, instrumentation). Retrofitting on an existing installation amounts approximately to \notin 200 000 (materials).										
Cross media effects	Air	Subs OVC relat NO _x	Substantive reduction of air emissions. Other gases may also be used when OVC is installed (flash gas etc.) instead of them being vented. When a relative large amount of strip gas is needed, use of other gases is limited. NO _x emissions are less than 150 mg/m ³ .								
	Energy	Low	Lower energy consumption in view of use of other gases.								
	Added chemicals	Non	None.								
	Waste	Non	None.								
Other impacts	Safety	Non	e.								
	Health	No a	No air emission of hydrocarbons.								
Practical	Genera	l				Offsl	iore				
experience	More than 15 years of experience industrial wastewater treatment	ce with OV	C onshore	e (OVC is applied 2000.	offshore in new installations since					
Conclusion	BAT			I	Emerging Ca	ndidate for E	BAT				
Literature source	[1]										

Table B - 2: Flu	id from condensor to p	roductio	on separator							
Principle	Condensation of overhead of dissolved oil. This relat production water, gas and of aromatic hydrocarbons glycol regeneration water to the water-condensate se	vapours f tively sma condensa (dissolve is most ef parator.	from the glycol regenerator pro all stream is brought into conta the in the production separator. ad oil), thus reducing discharge fectively injected before the slu	duces a w act, under The condo of aroma g catcher	atery stream w high pressure, ensate and gas atic hydrocarb or gas cooler,	with a high co with a large will extract a ons (dissolve but may also	ncentration amount of a large part d oil). The be pumped			
Process diagram	gas glycol excess gas water + aromatic HC's production separator condensate water separator									
Basic elements	Line elements, buffer tank	, recycle p	oump							
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Production chemicals ■ Methanol □ Glycols □ Corrosion inhibitors □ Anti-scale solutions □ Demulsifiers	R [%] *	Oil Dissolved BTEX Benzene PAHs Dispersed oi Oil	oil 	R [%] >50 >50 >50 >50 R [%]			
	Remarks: The removal efficiency is the quality of treatment system: *: Partially removed if pre-	related to stems. sent.	the partial flow and dependent	on the con	nposition of ga	as and conden	sate and			
Technical details	Platform Produced water volume (design) Partial flow (design) Required area (LxWxH) Mass (filled)		Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 0,8 x 0,5 x 1 m 0,3 tonnes	Gas 2 6 r 0,1 1 x 0,6 0,5 t	(large) n ³ /h m ³ /h x 1,5 m onnes	Oil n.a	1			
Critical operational parameters	The advantages of this tech temperature and may best	nnique de be evalua	pend on the composition of gas ted by using a process simulation	and conde	ensate, the sepa	arator pressur	e and			
Operational reliability	High.									

Indication of										
costs	Costs	Inv	estment costs	(CAPEX)	Explo	vitation costs (OPEX)			
			[€]			[€ / year]				
		pres	ent	new	presen	t	new			
	gas platform, small	100	000	74 000	30 900)	16 500			
	gas platform, large	115	000	85 000	35 900)	19 400			
	oil platform	n.	a.	n.a.	n.a.		n.a.			
						1				
	Cost/kg removed	Gas pl	atform, small	Gas pla	Gas platform, large		atform			
		Existing	New	Existing	g New	Existing	New			
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]			
	dissolved oil	376	201	62	34	n.a.	n.a.			
	dispersed oil	-			-					
	zinc equivalents	-	-	-	-					
Cross media	Air	Littl	e influence.							
circus	Energy	For	HP re-circulat	ion pump.						
	Added chemicals	Non	None.							
	Waste	Non	None.							
Other impacts	Safety	Non	None.							
	Maintenance	Only	Only pump maintenance.							
Practical	Genera	al			Offs	hore				
experience				Is already ap	oplied offshore					
Conclusion	BAT			Emerging Candidate for BAT						
Literature	[1]									
source										

Table B - 3: Alt	ernative methods of ga	s drying	5							
Principle	Usually, gas washers are u solubility of aromatic hyd water in the process regen soluble, reduce the amoun methanol via the IFPEX technique suitable especial	used for g lrocarbons leration of nt of aron process. 7 lly in the c	gas dry s in g f glyco natic l These case of	ing. The gas is washed ir lycol is high, causing hig ol. Alternative 'washing f nydrocarbons being remo alternative 'washing fluid of the less stringent required	n counter- gh concer luids' wh wed. Alte ds' will a ments wit	flow with glyc ntrations of aro ich render aron ernative 'washin ilso remove les ih regard to dew	ol (TEG or matic hydroc natic hydroc ng fluids' ar s water, ren 7 point.	DEG). The ocarbons in arbons less re MEG or dering this		
Process diagram										
	We das wet gas wet gas wet gas wet gas wet gas wet gas wet gas We das (20%) Broduction Br PEX bwer									
Basic elements	IFPEX towers (strip towers	s), J-T val	lve (or	turbo expander), cold sep	oarator, fi	lter, water-cond	ensate separ	ator, pump		
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Prod □ M □ G □ Co □ An □ Do	uction chemicals ethanol lycols orrosion inhibitors nti-scale solutions emulsifiers	R [%] 100	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] 35-85 35-85 35-85 ? R [%]		
	<i>Remarks:</i> Removal efficiencies of th	e IFPEX j	proces	s, using methanol as 'was	hing fluid	l'.				
Technical details	Platform Produced water volume (design) Partial flow (design) Required area (LxWxH) Mass (filled)			Gas 1 (small) 1 m ³ /h 0,05 m ³ /h	Gas 6 0,	2 (large) m ³ /h 1 m ³ /h	Oil 1 n.a.			
Critical operational parameters	Only applicable when gas and condensate, part of the cooling with J-T valve (or 20 °C, in order to limit me	drying is methano more coo thanol los	not ve l is los ling ca sses. En	ry critical. Relatively high at in the water phase. Suffi apacity is needed). The co- nergy may be needed for 1	n use of m icient gas oling pro- recompres	ethanol in view pressure is requ cess preferably ssion.	of absorptio uired in orde takes place b	on in gas r to allow pelow –		
Operational reliability	Relatively easy operation. regeneration. No foam form	The IFPE ming or bi	X tow reaking	er may also be installed o g up due to (over-) heating	n satellite g.	e platforms. No	heat needed	for		

Indication of costs	In view of the fact that replacement a Rather a comparison of investment a	of existing systems is and operational costs	s concerned, no detailed cost analysis was performed. with existing systems took place.					
	Table 1: Comparison of investments com Saving investments IFPEX compared to	nmon systems vs. IFPE. common systems	X					
	TEG-system25MEG-system10	5-30%)%						
	Table 2: Comparison of operational costs Saving investments IFPEX compared to	s common systems vs. I common systems	FPEX					
	TEG-system25Glycol injection system20	5-30%)%						
	Remarks: The major advantage of an IFPEX-1 system over more commonly applied systems is that no glycol regenerator is needed. Thus CAPEX and energy consumption are much lower. Moreover, process control is better. An IFPEX-system uses more methanol compared with traditional TEG gas drying systems. There are almost no air emissions. An IFPEX unit, however, does use large amounts of methanol. The IFPEX-1 system can easily be combined with the IFPEX-2 process for the removal of acidic gases (CO ₂ and H ₂ S). Other alternative gas drying systems are: - Twister supersonic separator (see table C-13); and							
Cross media	- DRIZO process; regenerat	No emissions of BTEX and VOS (incl. strip gas)						
effects	Energy	IFPEX requires 80 pressure is sufficient	90% less energy than a glycol system, provided that nt to allow cooling.					
	Added chemicals	Methanol consump 1 900 l/day (large g	tion approximately 275 l/day (small gas platform) and gas platform).					
	Waste	Methanol (50-100 no glycol consump	ng/l) in (small amount of) water from the IFPEX tower. tion.					
Other impacts	Safety	No glycol chain in	area with potential danger of explosion.					
	Maintenance	Far less maintenand	ce.					
Practical	General		Offshore					
experience	Limited experience with alternative Worldwide approximately 10 system	gas drying systems. ns.	No difference with onshore application, except that J-T valve or expander is not economically feasible, since gas needs high pressure for transportation in the pipeline.					
Conclusion	BAT		Emerging Candidate for BAT					
Literature source	[1]							

Table B - 4: Ma	cro porous polymer ex	traction	(MP	PPE) (partial flow)						
Principle	Macro Porous Polymer Extraction (MPPE). Water from the glycol regeneration is directed through a column packed with a bed of MPPE material. An extraction fluid, immobilized in the MPP matrix, extracts hydrocarbons from the water phase. Treated water can be discharged immediately. Prior to reaching the (maximum) required effluent concentration, the feeds are lead through a second column; the first column is regenerated with low- pressure steam. Once the second column is saturated, the feeds are switched back to the first column. After a second cycle, the feeds are redirected to the first column again. A characteristic cycle lasts 1 to 2 hours. Steam and hydrocarbons are condensed, and may easily be separated because of the high concentration of hydrocarbons. Hydrocarbons are lead to the condensate treatment system, the small amount of water is redirected into the installation and treated.									
Process diagram		utou.								
	wate condenso (glycol rej	er ◀ or water + H gen <u>eration</u> ;	HC's	c ond en sor water- re cycle	steam gen MPPE-colur (alternate ex) or stripping)	de mi wate erator nns ktraction hydrocart eparator	r pons			
Basic elements	2 columns filled with MPF	PE materia	al, cor	ndenser, settling tank, stea	am generat	tor (electric).				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] ?	Pro(■ N □ G ■ C □ A □ D	duction chemicals Aethanol Hycols Corrosion inhibitors .nti-scale solutions Demulsifiers	R [%] >99 * **	Oil Dissolved BTEX Benzene PAHs Dispersed oi	oil I	R [%] >99 >99 >99 >99 R [%] >99 **		
	<i>Remarks:</i> The removal efficiency of 2 000-3 000 mg/l to < 1 m not sufficiently be establis *: if present **: the hydrophobic part is	benzene a g/l are po hed.	and ot ssible 1.	her dissolved hydrocarbor . The occurrence of the ren	ns, includi moval of r	ng TEX, is ver nercury during	y high: reduc a test operat	tions of ion could		
Technical details	Platform Produced water volume (design) Partial flow (design) Required area (LxWxH), including steam generator Mass (filled)			Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 1 x 1,5 x 1,7 m 1,5 tonnes	Gas 2 (large) 6 m ³ /h 0,1 m ³ /h 1 x 1,7 x 2 m		Oil n.a	1		
Critical operational parameters	The MPPE material should generator should be demin	l be repla eralised.	ced in	order to avoid loss of effe	ectiveness	. The feed wate	er for the stea	m		
Operational reliability	The process is not affected (remote control).	l very mu	ch by	fluctuations in flow or BT	EX-conce	entrations and o	can be fully a	utomated		

Indication of										
costs										
	Costs	In	vestment costs	(CA	APEX)	Explo	itation	costs (C	OPEX)	
			[€]				[€ /	year]		
		pre	sent		new	present	;	new		
	gas platform, small	324	000	2	276 000	99 800		59 200		
	gas platform, large	368	000	3	313 000 117		117 300		1 200	
	oil platform	n	a.		n.a.	n.a.			n.a.	
	Cost/kg removed	Gas p	latform, small		Gas platform, large			Oil pla	tform	
		Existing	g New		Existing	New	Exi	sting	New	
		[€/kg]	[€/kg]		[€/kg]	[€/kg]	[€/	/kg]	[€/kg]	
	Benzene	608	361		102	62	n	.a.	n.a.	
	BTEX	486 289 82 50								
	Remarks:	() (DDD								
<i>a</i> "	Including costs for replacement	of MPPE	extraction flui	d.	1 1/ 1					
effects	Air	Req	uired energy w	/111	lead to increase	air emissio	ons.			
	Energy	Elec	ctricity for stea	m g ,008	generation (6-2, 8 / 0,005 m ³ /h r	5 kg LP stea esp. 4,4 / 13	im per ,2 MW	m ³ wate h/year).	r) and for	
	Added chemicals	Extr via LP	Extraction fluid is consumed very slowly, and is transported with the BTEX via the separator. Possibly chemicals for demineralisation of feed water for LP steam production.							
	Waste	The	The MPPE bed should be replaced approximately every 2 years.							
Other impacts	Safety	Nor	ie.							
	Maintenance	Rela	atively little.							
Practical	Genera	l				Offsh	ore			
experience	Operational experience with MPPE-process in industrial waste water treatment. Successful treatment (partial flow and end flow) of produced water at TFE in Harlingen, the Netherlands.			Sı	uccessful tests	on partial flo	ows.			
Conclusion	BAT				Emerging Car	ndidate for E	BAT			
Literature source	[1] [6]									

Table B - 5: Ste	am stripping (partial fl	ow)						
Principle	Hydrocarbons can be remo stripping. The water is fed This technique is suitable Steam and hydrocarbon v Hydrocarbons that have be discharged.	oved from into a pa- for the re- vapours an een separa	cond cked o emova re cor ated b	ensed water from glycol re column and brought into i al of dissolved oil (BTEX indensed and separated ea y steam can be directed to	egeneration ntense con), but wil sily becau the cond	on on gas platfont ntact with stea l also remove use of the hig ensate treatme	orms by mean m (known as aliphatic hyd h hydrocarbo ent system; w	ns of steam stripping). Irocarbons. on content. ater can be
Process diagram	produced water	buffer tank		steam stripping column		exce lensor	ess gas	
Basic elements	Buffer tank, feeding pump condensate pump, (electric	, heat exc	hange r.	r, stripping column, conde	ensor, BTI	EX-accumulate	or, re-circulat	ion pump,
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Proc ■ M □ G ■ C □ A □ D	duction chemicals (ethanol dycols Corrosion inhibitors nti-scale solutions Demulsifiers	R [%] 10-90* **	Oil Dissolved BTEX Benzene PAHs Dispersed oi	oil I	R [%] >99 >99 >99 >99 R [%] >97*
	<i>Remarks:</i> The removal efficiency for from 40 mg/l to < 1,5 mg/l *: When present. **: The hydrophobic part i	BTEX is	very	high: reductions from 500)-4 000 mg	g/l to < 1 mg/l,	aliphatic hyd	lrocarbons
Technical details	Platform Produced water volume (departial flow (design) Required area (LxWxH) (i generator) Mass (filled)	esign) ncl. steam	1	Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 3 x 2 x 3 m 8 tonnes	Gas 2 6 0,1 4 x 2	2 (large) m^{3}/h 1 m^{3}/h 3 x 4 m tonnes	Oil n.a	1
Critical operational parameters	In order to guarantee a con oil, avoiding disturbance o in order to maintain the ter for equal levels in boiler an	nstant flow of the proc nperature nd columr	v, a bu ess in at the n (and	iffer tank needs to be insta the column. When the flo top of the column. The st above the bundle of the b	Illed. This w is very eam line r oiler).	buffer tank als low, it may be nust be large e	so allows for necessary to enough in ord	skimming add water er to allow
Operational reliability	The technique is reliable a	nd is cons	sidered	d a proven technique for th	ne treatme	nt of glycol re	generation wa	ater.

Indication of costs								
	Costs	Inves	tment costs (CAPEX)	Explo	itation costs (OPEX)	
			[€]			[€ / year]		
		presen	t	new	presen	t	new	
	gas platform, small	170 00	0	135 000	57 900)	35 100	
	gas platform, large	265 00	0	210 000	90 700)	55 000	
	oil platform	n.a.		n.a.	n.a.		n.a.	
		1		I				
	Cost/kg removed	Gas platf	òrm, small	Gas platfor	rm, large	Oil p	atform	
		Existing	New	Existing	New	Existing	New	
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	
	benzene	354	214	79	48	n.a.	n.a.	
	BTEX	283	171	63	38			
	Remarks: Energy consumption is relativel be reduced considerably when h	vely high, despite the fact that part of the heat is recovered. Energy consumption on heat of the exhaust gases from turbines is used.						
Cross media effects	Air	Requir remain	ed energy wi	ll increase air en	nissions. Afte	er the condens	or little gases	
	Energy	Approx	kimately 40 k	40 kWh/m ³ regeneration water (mainly for boiler).				
	Added chemicals	None.						
	Waste	None.						
Other impacts	Safety	No sig	nificant influ	ence.				
	Maintenance	Relativ	ely little.					
Practical	Genera	General Offshore						
experience								
Conclusion	BAT		Emerging Ca	ndidate for E	BAT			
Literature source	[1]							

Table B - 6: Hig	gh pressure water cond	ensate s	epara	tor				
Principle	On gas platforms the dispo water condensate separato With this, exposure of t emulsions, is prevented. ' valve is prevented by sepa concentrations are achieva for condensate-water mixt	ersed and r, which c he water- The forma arating the able using ures from	dissol operate conde ation of mixt relati the ga	ved oil content in produ es at approximately the s insate mixture to a hig of small condensate dro ure and by releasing pre- vely simple add-on treat as filter / separator and h	iced water c same pressur gh pressure oplets in wa essure in sep tment equip nigh pressure	an be reduced re as the prim drop, result ter (emulsion parate valves. ment. The ted e scrubbers.	l by a high pr ary productio ing in the fc i) in the leve With this, ac hnique may a	essure (HP) n separator. ormation of l regulating ceptable oil lso be used
rrocess magram	2 M -	ond en sate/ ater	-•(on de nsate a te r	
Basic elements	High pressure water-conde	ensate sep	arator					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Proc □ M □ G □ C □ A ■ C	luction chemicals lethanol lycols orrosion inhibitors nti-scale solutions pemulsifiers	R [%]	Oil Dissolver BTEX Benzene PAHs Dispersed o	d oil	R [%] >30 >30 >30 >30 >30
	Remarks:					■ Oil		>20
Technical details	Platform Produced water volume (d Required area (extra) (Lx Mass (extra) (filled)	lesign) WxH)		Gas 1 (small) 1 m ³ /h negligible 1,5 tonnes	Gas 6 neg 4 t	2 (large) m ³ /h gligible connes	Oi n.	l 1 a.
Critical operational parameters	The technique is process in applicable on new offshore emulsion formation. When scrubbers, may also form s	ntegrated e installat n using pis stable emu	and shings and shings and shings and shines	hould be evaluated durin The use of corrosion inh pompressors, the lubrican s. The use of HP separat	ng the develo ibitors shou it-condensat tion of these	opment phase ld be minimis e mixture, wh flows may be	and is therefored, since thes ich is recover e very effective	re mainly e cause ed in e.
Operational reliability	High							

Indication of								
costs	Costs	Inves	stment costs	CAPEX)	Explo	itation costs (OPEX)	
			[€]			[€ / year]		
		preser	nt	new	present	t	new	
	gas platform, small	n.a.		36 000	n.a.		2 800	
	gas platform	n.a.		88 000	n.a.	3 400		
		11.a.		11. a .	11. a .		11. a .	
	Cost/kg removed	Gas plat	form, small	Gas platfo	rm, large	Oil pla	atform	
		Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]	
	dissolved oil	n.a.	93	n.a.	5	n.a.	n.a.	
	dispersed oil		76		4			
	zinc equivalents		226		39			
	Remarks:							
	that condensate pumps are not a smaller pumps can usually be in are not relevant, since the instal the water-condensate separator,	nps are not necessary in the first phase of production (when condensate production is highest usually be installed, resulting in lower investments. Costs for existing offshore installations are the installation would have to be shut down too long in order to allow for replacement of te separator, and since costs for investments are relatively high.						
Cross media	Air	Less e	missions bec	ause of lower end	ergy consump	otion.		
enects	Energy	Saves produc	energy in contract	ndensate injection or is higher than i	n pumps as lo n the pipeline	ong as pressure e.	e in the	
	Added chemicals	Less d	emulsifier.					
	Waste	None.						
Other impacts	Safety	None.						
	Maintenance	None.						
Practical	Genera	ıl			Offsh	nore		
experience		Is applied frequently offshore.						
Conclusion	BAT			Emerging Ca	ndidate for E	BAT		
Literature source	[1]							

Table B - 7: Me	thanol recovery unit						
Principle	Methanol is injected on g means of a methanol recov in a distillation column. methanol reflux. This is to methanol storage tank. Th less than 2%.	gas platforms very unit. The The tempera prevent to r the methanol of	in order to prevent hydrative e methanol-water mixture is ture in the top of the colur nuch evaporation of water. A content of produced water, w	es. It may heated up nn is mai After cond which usu	y be recovered to 99 °C, ther intained at ap ensation, the r ally does not	d from produ a the methano proximately 7 methanol is fe exceed 30%,	ced water by l is vaporised 75 °C by the d back to the is reduced to
Process diagram							
	water + methanol (2 - 30%)	gas buffer tank	distillation cd umn distillation cd umn the second secon	steam	ac densor method	anol	ate
Basic elements	Buffer cask, heat exchange inhibitor injection.	er, methanol	boiler, distillation column, co	ondensor,	accumulator,	transport pum	ps, scale
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] P	roduction chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers	R [%] 20-90*	Oil Dissolved BTEX Benzene PAHs Dispersed of	oil	R [%]
						u	K [/0]
	Remarks: Removal efficiency depen	dent on (fluc	tuations in) water throughput	t and meth	nanol content.		
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)	Gas 1 (small) 1 m ³ /h 5 x 4 x 3 m 8 tonnes	Gas 2 6 6 x 17	2 (large) m ³ /h 5 x 4 m tonnes	O n (MeOH inje rarely applie production.)	l 1 .a. ction is d in oil
Critical operational parameters	The distillation process is reduction. If produced wat methanol boiler. In order t throughput from the boiler unless combined with heat	very much at er contains s o prevent con to the colum recovery.	fected by to fluctuations in t alts, these may be deposited accentration of salts in the boi on by means of a re-circulation	hroughput in the hea iler, it is re on line. Re	t, which affect t exchanger an ecommended t elatively high o	s the quality of ad especially i o establish a s energy consu	of methanol n the mall nption
Operational reliability	Since methanol is often in lower removal efficiency a which leads to frequent sh	jected on sate and low meth ut downs for	ellite platforms, the water pro anol quality. Salt in produce maintenance.	oduction is d water le	s usually irreg ads to deposit	ular, which re s in the metha	sults in nol boiler,

Indication of												
0000	Costs		Inves	tment costs	(CA	APEX)	Explo	itation	costs (C	OPEX)		
			preser	[ŧ]		naw	nracan	[€/]	year	New		
	gas platform small		905 00	0	74	52 000	291 50	L D	171.600			
	gas platform large		1 755 0	00	1.5	52 000 291 300 546 000 602 000		365 90		65 900		
	oil platform		n.a.			n.a.	n.a.		2	n.a.		
	Cost/kg removed	(Gas plat	s platform, small		Gas platfor	rm, large		Oil pla	tform		
		Ex [€	tisting €/kg]	New [€/kg]		Existing [€/kg]	New [€/kg]	Exis [€/	sting [kg]	New [€/kg]		
	methanol		22	4,3		6,5	1,2	n	.a.	n.a.		
	<i>Remarks:</i> Methanol savings are depen average 4-10% over 1 year	<i>ks:</i> nol savings are dependent on methanol content in water and are based on a maximum content of 10-30%, ge 4-10% over 1 year or average 6% over 10 years.										
Cross media effects	Air	Energy, required for increase air emission					uced water, f	for pum el is use	ps and d.	cooling, will		
	Energy		Energy	for heating	, pu	mps and cooli	ng.					
	Added chemicals		Scale inhibitors (to j (dependent on corro			event salt depo vity of water a	osition) and c nd materials	orrosio used).	n inhibi	tor		
	Waste		In the buffer cask s probably deposit, v			sludge will deposit. In the heat exchanger scale will which will need to be removed using acids.						
Other impacts	Safety		No sig	nificant influ	uenc	ce.						
	Maintenance		Mainte of form	enance on bo nation of NC	oiler DRM	and heat exch f complicated	nangers may procedures a	be cons and hig	siderabl her cost	e, in the case s arise.		
Practical	Ge	neral					Offsh	ore				
experience	Recovery of methanol is ap onshore and offshore gas p problems in the operation of	ery of methanol is applied in a number of e and offshore gas production operations. Many ns in the operation of systems were encountered				ffshore, the sit shore operation ater throughput sier to install	uation is not on, except tha it are usually larger buffer	much c at the fl less. W casks.	differen uctuatio /hen ne	t from ons in the eded, it is		
Conclusion	D BAT				Emerging Ca	ndidate for E	BAT					
Literature source	[1]	□ BAT [1]										

Table B - 8: Lat	oyrinth type choke valv	/e						
Principle	With labyrinth type choke chokes. The gas speed in would then be less likely to originally developed to res On oil producing installa maximising oil droplet siz	e valves, g the choke to be brok strict the s ations, lab e, renderin	gas is e is lov cen up. ound p oyrinth ng subs	depressurised through fr ver (subsonic instead of This advances the previ oroduced by chokes. type choke valves ma sequent separation steps	sonic). It ous oil-wa y be used more effic	tead of smothe is expected tha ater separation. as means to ient.	ring as in co thydrocarbo This type o minimising	onventional on particles f valve was shear and
Process diagram	Raw gas Gas Well Well	s - water/conde separation	ensate	Hydrate inhibition and dehydration Water - condensate separation	Gas	ying Produced water	· •	
Basic elements	Choke valve of the labyrin	ith						
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	Prod M G G C C C	uction chemicals ethanol ycols prrosion inhibitors nti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%]
	□ Nickel		D De	emulsifiers		Dispersed oil ■ Oil		R [%]
	<i>Remarks:</i> This technique added to th subsequent technique, ther components. There is no in	e oil-wate e may be nformation	er separ a yield n avail	ration process leads to in l improvement. There is r able regarding an improv	nproved se no influency ement in y	paration. Depe ce on the removield.	nding on the val of dissolv	ved
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (extra)	esign)		Gas 1 (small) 1 m ³ /h negligible negligible	Gas 6 neg neg	2 (large) m ³ /h gligible gligible	Oil 175 n negli negli	l 1 m ³ /h gible gible
Critical operational parameters	Control of the gas speed th	nrough the	e valve.					
Operational reliability	Uncomplicated to apply. N	lo workin	g parts	. Choke is a standard par	t of platfo	rm installation.		

Indication of costs									
	Costs	Inv	estment costs	(CAPEX)	Exp	loitation costs	S (OPEX)		
			[€]			[€ / year]			
		pres	ent	new	prese	ent	new		
	gas platform, small		No suffic	cient data availab	le for an eco	onomic analys	is		
	gas platform, large								
	Cost/kg removed	Gas platfo	rm, small	Gas platform	n, large	Oil platfor	m		
		Existing	New	Existing	New	Existing	New		
		[€/kg]	[€/kg]	$[\texttt{€/kg}] \qquad [\texttt{€/kg}] \qquad [\texttt{€/kg}] \qquad [\texttt{€/kg}]$					
	dissolved oil		1	No data available	on model si	ituation			
	dispersed oil								
	Zinc equivalents								
	Kemurks.								
Cross media	Air	None							
	Energy	None							
	Added chemicals	None							
	Waste	None							
Other impacts	Safety	None	e.						
	Maintenance								
Practical	Genera	1			Of	fshore			
experience	Field tests in 1997.								
Conclusion	D BAT			Emerging C	andidate for	r BAT			
Literature source									

Table B - 9: Tw	vister supersonic separa	ator							
Principle	Twister technology is a /Compression system. Ga temperatures (for example creates a fog-like condens suppression is not required Still at supersonic velocit velocity swirl. The resulti tube. The liquid film is the gas core remains as the pr recovered using a diffuser bulk H2S and CO2 remo applications with sub-sea u	static pie s is expa e a temp ation, wh I due to the ties, the m ng swirl en remove cimary strict. Current val under inder inv	ce of equipment with charact inded adiabatically in a Laval erature at inlet of 20 °C drop- ich is typically a mixture of was ne very short residence time as mixture of gas and liquid dro forces the condensation outwa ed using either a co-axial tube of ream. After inducing a weak sha in natural gas applications are of reinvestigation. The technolog	teristics si nozzle, c s mid-Twi ater and he well as the oplets enter rd to form or slits in t hock wave lehydration y is currer	milar to those of a Tu reating supersonic velo ster to -50 °C). The lo eavier hydrocarbons. Ch e supersonic velocities v rs the win section, gen a liquid film on the im he wall of the separation , 70-80% of the initial n and hydrocarbon dew ntly suitable for offshor	rbo-Expansion cities and low we temperature emical hydrate vithin the tube. erating a high ner wall of the n tube. The dry gas pressure is pointing, with re and onshore			
Process diagram	applications with sub-sea t		esugation.						
	Se Feed	Inlet Separator Feed Liquid							
Basic elements	Inlet separator, Twister tub	oe, second	lary separator, heat integration	of applical	ble				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions 	R [%]	Oil Dissolved oil BTEX Benzene PAHs	R [%]			
	□ Nickel		Demulsifiers		Dispersed oil ■ Oil	R [%]			
	<i>Remarks:</i> Twister currently (mid 200 develops further. Dew poin specific process conditions	00) achieven 100 achieven 100	ves a zero degree dew point, wi 8 degrees are expected by mid 9 differ per application.	th lower do 2003. The	ew points expected as th quoted dew points depen	e technology nd on the			
Technical details	Capacity: LxBxH (m) Typical skid: Weight (tons) Typical skic Saves space.	1:	1 to 5 mln m3/day, 100 bar j Multi tube arrangements are 10x3x3 40 tons	per tube, possible.					
Critical operational parameters	Vapour composition under	mid-Twi	ister conditions must be well w	ithin produ	act stream specifications				
Operational reliability									

OSPAR Commission, 2002:						
Background Document concerning	Techniques for	the Management o	f Produced	Water from	Offshore 1	Installations

Indication of										
costs	Costs		Investm	ent costs (CAPEX)	Explo	oitation costs (OPEX)		
				[€]	- ,	Ē.	[€ / year]	- ,		
			present		new	presen	t	new		
	gas platform, small gas platform, large oil platform			No	o data on model s	situation avai	ilable			
	Cost/kg removed	Ga	s platform	n, small	Gas platfor	rm, large	Oil pla	utform		
		Exist [€/k	ting (g]	New [€/kg]	Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]		
	dissolved oil dispersed oil zinc equivalents		No data on model situation available							
	Remarks:									
Cross media	Air	ľ	No emissi	ions to atn	nosphere.					
enects	Energy	F	Fixed pre	ssure ratio	atio device, increasing need for wellhead compression.					
	Added chemicals	٢	No additional chemicals are needed.							
	Waste	٢	None.							
Other impacts	Safety	Ν	None.							
	Maintenance	٢	None.							
Practical experience	Ge	eneral				Offsl	iore			
Conclusion	D BAT				Emerging Ca	ndidate for E	BAT			
Literature source	[4]									

Table C - 1: Ski	mmer tank							
Principle	In order to reduce the con on the difference between retention time is sufficient only for non-dissolved con such as benzene and heav version, parallel plate inte number of techniques for t	tent of dis n the spe t, oil float mponents vy metals erceptor (1 the remov	spersed cific gr s to the such as cannot PPI) or ral of dis	oil in produced water, a avity of oil and water surface and can be sepa dispersed oil with a su be separated using thi corrugated plate intercospersed oil.	a skimmer and the c arated by a fficiently l is techniqu eptor (CPI	tank can be u coalescence of an overflow. T large particle s ie. The skimn I), is mostly u	sed. Separation oil droplets. This technique size. Dissolve her tank or it sed as part of	on is based When the is suitable d materials s modified f a set of a
Process diagram								
		produœd	water	oil		ga	as	
Basic elements	LP-tank with internal plate	es for oil-	water se	paration and possibly a	pump			
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	Produ	action chemicals thanol vcols rrosion inhibitors ti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%]
	□ Nickel		De De	mulsifiers		Dispersed oi ■ Oil	1	R [%] 20-90
	<i>Remarks:</i> Removal efficiency for oil practice in the offshore inc required to achieve the per	is 100% lustry, rer	for drop noval se standa	olets > 150 μm, depende eems possible up to oil c rd for dispersed oil.	ent on spec	tific gravity and f 200 mg/l. Add	d temperature ditional techn	e. In iques are
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) 1 m ³ /h 1,2 x 2,5 x 2 m 2 tonnes	Gas 6 2,4 x 6 t	2 (large) m ³ /h 2,5 x 2 m tonnes	Oil 175 r n.a	1 n ³ /h a.
Critical operational parameters	The orientation of the oil- gravity. When an intermed is not easy to control. The limits the separation effici skimmer tank is too large	water inte liate layer relationsl ency to 20 in compar	rface (le r is form hip betw 00 mg/l rison wi	evel control in the tank) and, because of emulsion yeen settling time and ac A skimmer tank is hard th a PPI.	is determi n formation cceptable d lly feasible	ned by the diff n or e.g. ferrou limensions of e e for oil produc	ference in spe is oxides, this equipment off cing platform	cific interface shore s, since a
Operational	High requires regular clea	ning.						

Indication of costs	<i>Remarks:</i> Costs should be evaluated in compar comparable dimensions, the costs of	aluated in comparison with the much more efficient PPI or CPI. For an installation with sions, the costs of a skimmer tank would approximately be half.						
Cross media	Air	None.						
effects	Energy	None.						
	Added chemicals	None.						
	Waste	Because of a low fl deposit, mainly san	ow velocity, relatively large amounts of sludge may d and clay, which may be slightly radioactive (NORM).					
Other impacts	Safety	Risk of exposure to operations.	benzene on gas producing installations during cleaning					
	Maintenance	Tank requires regul	lar cleaning.					
Practical	General		Offshore					
experience	Well known and accepted principle Much operational experience in the	for separation. process industry.	Technique is mainly applied on gas producing installations.					
Conclusion	BAT Emerging Candidate for BAT							
Literature source	[1]							

Table C - 2: Pro	duced water re-injection	on (PWI	RI)							
Principle	Produced water may be re-injected in the underground through a well. The water is usually filtered, and chemicals are added in order to prevent the formation of bacteria and corrosion. Preferably, the water treatment system will be oxygen-free. When cold fracturing is applied using cooled water, the capacity of the injection pumps will be considerably less. Sometimes, produced water can be injected directly into a producing reservoir, in order to maintain pressure or in order to achieve water flooding.									
Process diagram	produced wate treatment insta	er from allation	buf	ch emic als	c ool e	r injection pump	▶ in je cti on w el l			
Basic elements	Water treatment (oxygen-free), transport and/or injection pumps.									
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] 100 100 100 100 100	Proc M M G C A D	luction chemicals fethanol dycols orrosion inhibitors nti-scale solutions eemulsifiers	R [%] 100 100 100 100	Oil Dissolved BTEX Benzene PAHs Dispersed oi Oil	oil I	R [%] 100 100 100 100 R [%] 100		
Technical details	<i>Remarks:</i> A 100% removal efficience Platform Produced water volume (d	y, althoug esign)	gh a sn	nall part of components w Gas 1 (small) 1 m ³ /h	ill remain Gas	in filters and c 2 (large) m^{3}/h	coolers. Oil 175 1	1 n ³ /h		
Critical operational parameters	Required area (extra) (Lx) Mass (extra) Presence of a suitable laye of output of (existing) wat and paraffins in filters and	wxH) or for proc er treatme coolers.	luced v ent sys Availa	4 x 4 x 2 m 5 - 10 tonnes water re-injection and poss tems, e.g. content of oxyg bility of an existing well,	6 x <u>15 –</u> sibly suita en and pa suitable f	4 x 3 m 25 tonnes ability for cold articles. Possibl for modificatior	8 x 6 z 30-80 t fracturing. T y deposition t for injection	x 3 m tonnes he quality of scales n (leads to		
Operational reliability	considerable cost reductio PWRI is reasonably reliab degree of certainty. The re efficiency is hard to predic problematic, as is depositi	n). le, althou sult of co et as is the on of salts	gh pro ld frac oxygo s and p	duction and injection quan turing is even harder to pr en content. Corrosion of to paraffins in tubing and line	ntities car redict. Fil ubing or p es.	nnot be estimate ters require reg production lines	ed with a ver ular cleaning s in wells is c	y high g, the often		

Indication of									
costs		T				F 1	.,		DEV
	Costs	Inve	estment co ∫€	sts (C 1	JAPEX)	Explo	Itation co	osts (U earl	PEX)
		pres	ent	1	new	present	t	Jui	new
	gas platform, small	11 530	000	1	1 380 000	3 079 000		1 888 500	
	gas platform, large	12 975	000	12 620 000		3 497 100		2 128 100	
	oil platform	6 715	000	(6 100 000	2 258 60	00	14	78 000
	Cost/kg removed	Gas pla	s platform, small		Gas platfor	rm, large	C	Dil plat	form
		Existing	Nev	V	Existing	New	Existi	ng	New
		[€/kg]	[€/kg	g]	[€/kg]	[€/kg]	[€/kg	g]	[€/kg]
	dissolved oil	39 054	23 95	54	2 592	1 578	1 14	6	751
	dispersed oil	58 582	35.93	30	9 505	5 784	69	-	45
	zinc equivalents	1 121 750	688.0	15	128 469	/8 180	32.37	/8	21 216
	Remarks: Depreciation in the OPEX is ba	X is based on the assumption that a new well needs to be drilled, in an oil field from \in 11.8 MM. When an existing well is available for modification for PWI							
	€ 4,5 MM, in a gas field from €								
	costs may be reduced to $\notin 0,9$ M	1M – 1,8 M	M and in t	he ca	ase of dual comp	eletion to $\in 1$,4 MM –	2,3 M	M. Costs
	for reservation of space and wei installations may be reduced co	e and weight were not included. Costs for energy consumption for oil produced considerably when cold fracturing is applied							
Cross media effects	Air	Energ	gy for injed I fuel is us	ction ed.	pumps etc. will	increase air	emissions	s, espe	cially when
	Energy	Energ	gy for trans	sport	and injection pu	imps and pos	ssibly coc	oling p	umps.
	Added chemicals	Depe	ndent on the nder, bioc	ne ins ides,	stallation: scale acids, etc.	inhibitor, coi	rrosion in	hibito	r, oxygen
	Waste	Sludg buffe	Sludge, which may be slightly radioactive (NORM), will deposit in the buffer tank.						
Other impacts	Safety	PWR	I influence	es saf	fety very little, s	ince the inject	ction wate	er hard	lly contains
		any g	ases.						
	Maintenance	Main proce depos	tenance of dures and sition in tu	filtei high bing	rs and coolers is costs in case of requires regular	fairly intens NORM depo treatment w	ive, requi osition. Po ith acids.	ires co ossible	mplicated e salt
Practical	Genera	1		Ĭ	1 0	Offsh	nore		
experience	PWRI is applied onshore and of	ffshore for a	number c	f I	Injection in gas	fields is tech	nically fe	asible	, but is
	years in oil fields. Water produc	ction in gas	fields is	ä	applied rarely. C	Costs for inve	estments a	and ma	aintenance
Conclusion		icturing.				ner than onsr	iore.		
Conclusion	BAT				L Emerging Ca	ndidate for E	BAT		
Literature	[1]								
source	[2]								

Table C - 3: Dis	solved gas/induced gas	s flotatio	on (DGF/IGF)								
Principle	In the process of gas flotat produced water. Gas bubb wheel. The foam and part Gas Flotation, DGF) or by	tion, a gas oles and c of the wat means of	is is finely distributed in the proof oil form a foam on the water, we ther is skimmed into an overflow. If an impeller or pump (Induced O	luced wat which is . Gas may Gas Float	ter. Raising gas skimmed, ofter be injected un ation, IGF).	s strips oil dro n by means o nder pressure	oplets from of a paddle (Dissolved				
	Dissolved particles such a volatile components. Som from the produced water.	s benzen etimes, ai	e and heavy metals are not rem ir is used instead of gas, in whi	noved, alt ch case a	hough gas inje 1 major part of	ection may "s BTEX is als	strip" some to removed				
	DGF/IGF usually is the "p	DGF/IGF usually is the "polishing" step in a multiple-step procedure to remove dispersed oil from produced water.									
Process diagram	propulsion ispection hatch ispection h										
Basic elements	Low pressure tank with im	nellers or	numps for gas injection								
Suitable for the removal of:	Heavy metals	R [%]	Production chemicals	R [%]	Oil Dissolved	a il	R [%]				
	\Box Zinc				BTEX	011					
R = removal	\Box Lead		□ Corrosion inhibitors		 BIEA Banzana 		0-20				
efficiency	■ Mercurv**		\Box Anti-scale solutions				0 20				
	□ Nickel				Discussed of	1	D 10/1				
					Dispersed of	1	K [%]				
					■ Oil		60-90*				
	Remarks: *: Dependent on, amongst reduced from 100-300 mg/ longer. **: Mercury is not remove	others, sp /l to 20-40	becific gravity of the oil (and wa) mg/l. Higher removal efficienc 7, but free mercury may separate	ter) and t tes may t because	he temperature be achieved wh of low flow ve	, oil contents en retention t locity.	are ime is				
Technical details	Platform		Gas 1 (small)	Gas	2 (large)	Oil	1				
	Produced water volume (d	esign)	1 m ³ /h	6	m ³ /h	175 r	n ³ /h				
	Required area (LxWxH)		1,8 x 1 x 2 m	2 x 1	1,5 x 2 m	10 x 2,5	5 x 3 m				
	Mass (filled)		1,4 tonnes	3	tonnes	45 to	nnes				
Critical operational parameters	Level control and the amo efficiency and the oil control negative effects on the DG problems may occur as a r therefore rarely applied.	unt of wat ent of the F/IGF. Fo esult of do	ter which is transported via the o effluent. Demulsifiers which are or this reason, some foaming age eposition of salts and ferrous ox	overflow, e applied ents may ides, form	determine to a in the oil-water need to be app nation of bacter	great extent r separator ma lied. When ai ria and corros	the ay have r is used, ion, and is				
Operational reliability	The installation requires re	egular clea	aning in order to remove deposit	ted salts (scale) and othe	r deposits (sl	udge).				

Indication of costs	Remarks: In view of the dimensions of the equipment, space may need to be created by modification of existing steel constructions. This may involve considerable costs. An IGF installation with a capacity of 175 m ³ /h costs approximately € 250 000 (complete installation € 435 000, possibly modification of steel constructions).							
Cross media effects	Air	Low pressure gas which is resolved. In order to limit air emissions (also in view of health reasons) it is recommended to install portholes in covers for visual inspection of the foam layer.						
	Energy	Energy consumption 175 m ³ /h.	n approximately 5 / 15 / 50 kWh for capacity of 1 / 6 /					
	Added chemicals	Foaming agent may	need to be applied.					
	Waste	Because of a low fl deposit, mainly san	ow velocity, relatively large amounts of sludge may d and clay, which may be slightly radioactive (NORM).					
Other impacts	Safety	None.						
	Maintenance	Protective clothing installations in view installations because	necessary during cleaning operations: on gas producing v of benzene and possibly mercury, on oil producing e of NORM and sometimes mercury.					
Practical	General		Offshore					
experience	Technique is frequently applied for w Much operational experience in proc	water treatment. ess industry.	Frequently applied offshore for removal of dispersed oil.					
Conclusion	BAT							
Literature source	[1]							

Table C - 4: Pla	te interceptors (PPI/CI	PI)							
Principle	In order to reduce the dispersed oil content in produced water, a parallel plate interceptor (PPI) or corrugated plate interceptor (CPI) may be applied. Separation is based on the difference between the specific gravity of oil and water and the coalescence of oil droplets on the plates. Since the distance between the plates is small, small oil droplets need to rise over a short distance, allowing for separation after a relatively short retention time. On the plates small oil droplets coalescence to larger droplets and therefore rise easier to the water surface. In CPIs, the undulating plates are almost horizontal. Larger oil droplets float to plates above through holes in the lower plates. When the oil layer becomes thicker, oil flows over and is redirected into the process. This technique is applicable only for non-dissolved components such as dispersed oil with sufficient particle size. On oil producing installations, this technique may form part of a series of techniques for the removal of dispersed oil. On gas platforms, this technique sometimes suffices to achieve the performance standard.								
		produced water gas water di							
Basic elements	LP-tank with internal pack	c of plates	and p	oump					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	Proc □ M □ G □ C	duction chemicals fethanol ilycols orrosion inhibitors .nti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%]	
	□ Nickel			Demulsifiers		Dispersed oi ■ Oil	1	R [%] 80-95	
	<i>Remarks:</i> Removal efficiency for oil offshore industry removal balls in the inlet compartm	is 100% efficienci nent may 1	for oil es up raise r	l droplets > 35 μm, depen to 95% are achieved (fro emoval efficiency consid	ident on sp m 1 000-4 erably.	ecific gravity a 000 mg/l to 10	and temperatu 0-300 mg/l).	ire. In the A pack of	
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	lesign)		Gas 1 (small) 1 m ³ /h 2,5 x 0,6 x 1,8 m 2,5 tonnes	Gas 6 2,5 x 1 5,5	2 (large) m^{3}/h ,2 x 2,1 m tonnes	Oil 175 t 2,3 x 5 z 38 to	$\frac{1}{n^{3}/h}$ x 3,5 m nnes	
Critical operational parameters	Level of oil-water interfac retention time, stability of Additional techniques are	e in the P the emuls required i	PI is c sion au n orde	ritical for adequate operand temperature. The to achieve the performation of the temperature of temp	tion. Separation. Separation	ration efficienc	ey is depende	nt on	
Operational reliability	High but requires regular of Capable of handling relatic content.	cleaning. vely large	oil co	ontent fluctuations of the	influent, w	ith limited effe	ect on the effl	uent oil	

Indication of costs	Dimensions and weight for a PPI for 175 m ³ /h are presented for 1 installation. In practice, a second PPI may need to be installed as standby equipment. For this reason, on oil producing installations it is recommended to divide the required capacity over a number of PPIs in order to allow for cleaning. The PPI described costs approximately € 400 000 (fully installed).								
Cross media	Air	Energy for oil pump will increase air emissions.							
enects	Energy	Energy consumption	n for oil pumps.						
	Added chemicals	None.							
	Waste	Because of a low fl deposit, mainly san	ow velocity, relatively large amounts of sludge may d and clay, which may be slightly radioactive (NORM).						
Other impacts	Safety	Risk of exposure to operations.	benzene on gas producing installations during cleaning						
	Maintenance	Pack of plates requ	ires regular cleaning.						
Practical	General		Offshore						
experience	Well known and accepted principle f Much operational experience in the p	for separation. process industry.	Technique is frequently applied on oil producing installations, but also on gas platforms.						
Conclusion	BAT	BAT Emerging Candidate for BAT							
Literature source	[1]								

Table C - 5: Hy	drocyclones								
Principle	Oil-water separation in hydrocyclones is based on centrifugal forces and the difference between specific gravity of oil and water. Produced water is injected under pressure tangentially. The shape of the cyclone causes an increase of speed, resulting in large centrifugal forces and separation of oil and water. The heavier water will move in a vortex towards the exit of the cyclone, whereas the lighter oil will move in a secondary vortex in the centre of the cyclone towards the inlet. Dissolved components, such as benzene and heavy metals will not be removed. Recently, rotating cyclones were developed, which are a 'compromise' between a hydrocyclone and a centrifuge. Rotating cyclones have higher removal efficiencies than a static hydrocyclone.								
	See also Table C - / on cel	ntriiuges.							
Process diagram	oil produced water tangential inlet								
Basic elements	Hydrocyclone and the request placed in parallel and integer	uired intak grated into	ke and o one	l outlet pipes. For high ca set of equipment.	pacity app	lications, a nur	nber of cyclo	nes are	
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]		duction chemicals Iethanol ilycols corrosion inhibitors nti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%]	
	□ Nickel			emulsifiers		Dispersed oi	1	R [%]	
						■ Oil		Up to 98	
	<i>Remarks:</i> Removal efficiency for oil mg/l (static cyclone) and 4 effluent oil contents may b	is up to 9 0 mg/l (ro e conside	98% fo otating rably	or droplets > 15 - 30 μ m, g cyclone). When the oil of higher.	resulting in content in t	n effluent dispe the inlet is mor	ersed oil cont e than 1.000	ents of 60 mg/l,	
Technical details	Platform Produced water volume (d Required area (LxWxH)	esign)		Gas 1 (small) 1 m ³ /h 0,8 x 2,5 x 1 m	Gas 6 1 x 3	2 (large) m ³ /h/ 5 x 1,2 m	Oil 175 r 3 x 4 x	1 n ³ /h 1,7 m	
	Mass (filled)			0,7 tonnes	1,7	tonnes	9 tor	nnes	
Critical operational parameters	Disadvantage is that only I Oil-water emulsions can he neutrally buoyant. Rotating In order to allow for adequ The process could therefor	arge parti ardly be ti g cyclones ate operative e be affec	cles (reated s can tion o tted b	>15 µm) can be removed , neither can particles wh remove particles up to 5 µ f hydrocyclones, a consta y the presence of gas.	, dependin ich are cov um. int inlet pro	g on the specif /ered by an oil essure and cons	ic gravity of t layer and wh stant flow is r	the oil. ich are required.	
Operational reliability	The system is robust and c the performance standard t is less reliable when fluctu multiple cyclones. A rotating cyclone is vulne	ompact. U for dispers ations in t erable and	Jsuall sed oi the pr l may	y, subsequent treatment to l. Since the oil content is ocess occur. It is recomm require frequent maintent	echniques highly dep ended to d ance becau	are installed in endent on the ivide the requi	order to com throughput, throughput, the red capacity of parts.	nply with he system over	

Indication of costs										
	Costs	Inve	stment costs	(CAPEX)	Explo	Exploitation costs (OPEX)				
			[€]		[€ / year]					
		Prese	ent	new	present	t	new			
	gas platform, small	n.c		n.c.	n.c.		n.c.			
	gas platform, large	n.c		n.c.	n.c.		n.c.			
	oil platform	790 0	00	650 000	248 700) 1	47 100			
	Cost/kg removed	Gas pla	tform, small	Gas platfo	rm, large	Oil pla	atform			
		Existing [€/kg]	Existing New [€/kg] [€/kg]		New [€/kg]	Existing [€/kg]	New [€/kg]			
	dispersed oil	n.c. n.c.		n.c.	n.c.	38	22			
	Remarks:									
Cross media	Air	Comp	barable to oth	er techniques, in	view of energ	gy consumption	1.			
cifects	Energy	Energ	gy for pumps	to pressurise influ	ient, 24-30 k	W (0,2 kWh/m	³).			
	Added chemicals	None								
	Waste	The 'possi	The 'heavy phase' (sand etc.) and depositions in equipment (scaling), possibly slightly radioactive (NORM).							
Other impacts	Safety	None								
	Maintenance	Relat	ively little, al	though scale may	deposit on h	ydrocyclones.				
Practical	Genera	l			Offsh	ore				
experience	Well known and much used prin Much operational experience in	nciple for se	paration. industry.	Much experience a long history o	e in offshore f developmer	oil-water sepa nt.	ration. Has			
Conclusion	BAT			Emerging Ca	indidate for E	BAT				
Literature source	[1]									

Table C - 6: Ma	cro porous polymer ex	traction	(MPP	PE) (end stream)							
Principle	On gas platforms, hydrocarbons can be removed from produced water from the glycol regeneration process using Macro Porous Polymer Extraction (MPPE). Water from the glycol regeneration is directed through a column packed with a bed of MPPE material. An extraction fluid, immobilised in the MPP matrix, extracts hydrocarbons from the water phase. Treated water can be discharged immediately. Prior to reaching the (maximum) required effluent concentration, the feeds are led through a second column, the first column is regenerated with low-pressure steam. Once the second column is saturated, the feeds are switched back to the first column. After a second cycle, the feeds are redirected to the first column again. A characteristic cycle lasts 1 to 2 hours. Steam and hydrocarbon vapours are condensed, and may easily be separated because of the high concentration of hydrocarbons. Hydrocarbons are led to the condensate treatment system, the small amount of water is redirected into the installation and treated.										
Process diagram	water + HC's (water treatment system)										
Basic elements	2 columns filled with MPF	2 columns filled with MPPE material, condenser, settling tank, steam generator (electric).									
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] ?	Produ Me Gly Co An Det	duction chemicals Methanol Hycols Corrosion inhibitors Anti-scale solutions Demulsifiers		* [%] >99 * **	Oil Dissolved BTEX Benzene PAHs Dispersed oi Oil	oil I	R [%] >99 >99 >99 >99 R [%] >99*		
	<i>Remarks:</i> The removal efficiency of 2 000-3 000 mg/l to < 1 m founded. *: if present **: the hydrophobic part is	benzene a g/l are pos	and other ssible.	er dissolved hydrocar The removal of mercu	rbons, i cury dur	includin ring a te	ng TEX, is ver est operation w	y high: reduc vas not suffici	tions of ently		
Technical details	Platform Produced water volume (d Partial flow (design) Required area (LxWxH), i generator Mass (filled)	esign) ncl. steam	ı	Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 1,5 x 2 x 2,5 m 2,5 tonnes		Gas 2 6 0,1 2 x 2 5 t	2 (large) m^3/h m^3/h 3 x 3 m onnes	Oil n.a	1 ı.		
Critical operational parameters	The MPPE bed may be blo treatment step necessary. I much as possible. The MP water for the steam genera will pollute the MPPE mat	ocked by p n order to PE materi tor should erial.	particles preven ial shou d be der	s and salt depositions at salt and metal depo ld be replaced yearly nineralised. Longer h	s (scale ositions y in vie hydroca	e), whic s, the way w of ac arbons	h may render a ater should rer tivity loss and $(> C_{20})$, which	a filter or othe main free of o clogging. Th are inevitabl	er pre- xygen as le feed y present,		
Operational reliability	The process is not very mu (remote control). It is there effect on operation of the s	ich affecte efore also system.	ed by fl suitable	uctuations in flow or e for satellite platforr	r BTEX ms. Ali	K-conce	entrations and contents up to	can be fully a 150 mg/l hav	utomated e little		

Indication of										
costs										
	Costs		Invest	tment costs	(C	CAPEX)	Explo	itation of	costs (C	OPEX)
				[€]				[€ / y	/ year]	
	11		presen	t		new	present		new	
	gas platform, small	5	514 00	0		431 000	191 800		1	26 200 75 500
	gas platform	d	n o	0	518 000		254 000)	1	/5 500 n a
			11.a.			11.a.	11.a.			11. a .
		~							~	2
	Cost/kg removed	Ga	s platf	orm, small		Gas platfor	m, large		Oil pla	atform
		Exist	ting	New		Existing	New	Exis	ting	New
		[€/k	(g]	[€/kg]		[€/kg]	[€/kg]	[€/l	(g]	[€/kg]
	benzene	2 70	2 703 1 778 2 433 1 600		209	145	n.	a.	n.a.	
	BTEX	2 43				177	122			
	dispersed oil	9 12	23	6 002		1 726	1 193			
	Remarks:									
~	Costs including replacement of	I MPPE	extrac	tion fluid.						
Cross media effects	Air	ŀ	Require	ed energy w	/111	l lead to increase	ed air emissio	ons.		
effects	Energy	E a	Electric and for	city for stear pumps (tota	m al	generation (3,5 for 0,2 / 1,4 m ³ /	kg low press h resp. 28 / 9	ure stea 90 MWl	m per n/year)	m ³ water)
	Added chemicals	E v le	Extract via the ow pre	ion fluid is separator. P essure steam	co Pos 1 p	nsumed very slo ssibly chemicals production.	owly, and is to for deminer	transpor alisation	ted wi 1 of fee	th the BTEX ed water for
	Waste	T d e	The Mi leposit every 2	PPE bed sho ion, complie months (de	should be replaced every year. In case of NORM plicated procedures and high costs. Pre-treatment filters (dependent on filter type and produced water composition					A nt filters omposition).
Other impacts	Safety	Ν	None.							
	Maintenance	Ν	Mainte	nance is stro	on	gly dependent o	n level of clo	ogging.		
Practical	Genera	al					Offsh	ore		
experience	Operational experience with M industrial waste water treatmen (partial flow and end flow) of p Harlingen, the Netherlands.	IPPE-pro nt. Succe produced	ocess i essful i d wate	n treatment r at TFE in	Field tests on partial flow in the Netherlands (no aliphatic hydrocarbons or corrosion inhibitor) and on end stream (Shell, Statoil). Further testing required.					ls (no or) and on required.
Conclusion	BAT					Emerging Car	ndidate for B	AT		
Literature source	[1] [6]				-					

Table C - 7: Cer	ntrifuge									
Principle	A centrifuge may be used in order to reduce the dispersed oil content in produced water. Oil-water separation in a centrifuge is based on centrifugal forces and the difference in specific gravity of oil and water. Degassed produced water is injected into the centrifuge where it is brought in rotation. Water will collect at the outside of the centrifuge, oil will collect in an inner layer. Oil and water are removed separately, under controlled conditions. An oil-water interface needs to be maintained. Oil is pumped back into the process, water is discharged. A centrifuge allows for separation of smaller oil droplets than a hydrocyclone. The energy consumption is higher. Centrifuges are usually applied as a polishing step when the performance standard cannot be achieved. On oil producing installations the use of centrifuges may be useful to clean skimmings from degassers and induced gas flotation units, thereby avoiding build up of sludges.									
Process diagram	[]		,	.p8						
	vater vater									
Basic elements										
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Produ Me Gly Co An De	action chemicals ethanol ycols rrosion inhibitors ti-scale solutions mulsifiers	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] * * * * R [%] 95		
	Remarks: Removal efficiency for oil dispersed oil from 400 mg Dissolved components (he *: In the case of high arom hydrocarbons will be remo	is 100% is 10% is 10\%	for droj 0 mg/l. ls, benz ocarbor he cond	plets > 3 μ m, depending ene) will not be remove a content, e.g. in case of lensate.	on specifi d. process m	c gravity and to	emperature. F	Removal of atic		
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) 1 m ³ /h 2 x 1,2 x 2 m 2,1 tonnes	Gas 6 2,3 x 1 <u>3,</u> 1	2 (large) m ³ /h 1,5 x 2,8 m tonnes	Oil 175 r n.a	1 n ³ /h a.		
Critical operational parameters	Especially suitable for sma feed. Use of corrosion resi contains oxygen.	all water s stant mate	streams. erials is	Relatively high energy recommended, especial	consumpt ly in cases	ion. Requires was of high tempe	vater degassin rature or wat	ng prior to er which		
Operational reliability	Centrifuges require freque standby equipment.	nt cleanin	ng (cont	amination) and mainten	ance. A se	cond centrifuge	e is often inst	alled as		

Indication of costs		Contraction costs (CADEX) Exploitation costs (ODEX)									
	Costs		Inves	tment costs (CAPEX)	Explo	itation	costs (C	OPEX)		
				[€]		_	[€/	year]			
			presen	t	new	present	ţ		new		
	gas platform, small		235 00	0	175 000	83 000 162 400		49 500 108 600 n.a.			
	gas platform, large		395 00	0	310 000						
	oil platform		n.a.		n.a.	n.a.					
	Cost/kg removed	G	as platf	òrm, small	Gas platfo	rm, large		Oil pla	tform		
		Exis	Existing New		Existing	New	Exis	sting	New		
		[€/	[€/kg] [€/kg]		[€/kg]	[€/kg]	[€/	kg]	[€/kg]		
	dispersed oil	16	563	991	465	311	n.	.a.	n.a.		
	Remarks:										
Cross media	Air	Energy for centrifuge and pump will increase						ons.			
cifects	Energy		Energy (large g	y for centrifu gas installati	ge and pump: 1,5 on).	s kW (small g	as insta	allation), 10 kW		
	Added chemicals		None.								
	Waste		Deposi slightly	ted material radioactive	in equipment (sa (NORM).	nd, clay, scal	e etc.)	which n	nay be		
Other impacts	Safety		Risk of	f exposure to	benzene during	cleaning oper	rations.				
	Maintenance		Centrif centrif	ùges require uges are ofte	cleaning every f	ew days, self remove sludg	-cleanii e.	ng mech	nanisms in		
Practical	Genera	ıl				Offsh	ore				
experience	Much operational experience in industry.	n the pr	rocessii	ng	Centrifuges are treatment, main	applied offsh ly on gas pro	ore for ducing	produc installa	ed water tions.		
Conclusion	BAT										
Literature source	[1]	BAT Emerging Candidate for BAT 1]									

Table C - 8: Ste	am stripping (end flow	·)						
Principle	Hydrocarbons can be removed from produced water by means of steam stripping. The water is fed into a packed column and brought into extreme contact with steam (known as stripping). This technique is suitable for the removal of dissolved oil (BTEX), but will also remove aliphatic hydrocarbons. Steam and hydrocarbon vapours are condensed and separated easily because of the high hydrocarbon content. Hydrocarbons that have been separated by steam can be directed to the condensate treatment system; water can be discharged.							
Process diagram	produced water	buffer tank		ale i bitor water	ste	am boile	er	TE X I ator
Basic elements	Buffer tank, feeding pump condensate pump, (electric	, heat excl c) re-boiler	hange r	er, stripping column, cond	ensor, BT	EX-accumulate	or, re-circulati	ion pump,
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Pro(■ N □ G ■ C ■ A ■ D	duction chemicals Methanol Hycols Corrosion inhibitors Anti-scale solutions Demulsifiers	R [%] 10-80 * *	Oil Dissolved BTEX Benzene PAHs Dispersed oi Oil	oil I	R [%] >90 >90 >90 >90 R [%] >85
	<i>Remarks:</i> The expected removal effi from 30 mg/l to < 3 mg/l *: The hydrophobic part is	ciency for partly ren	BTE	X is high: reduction from	50 mg/l to	o < 6 mg/l, alip	hatic hydroca	rbons
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) 1 m ³ /h 3 x 2 x 5 m 12 tonnes	Gas 6 6 x 20	2 (large) 5 m ³ /h 3 x 5 m tonnes	Oil n.a	1
Critical operational parameters	Since produced water usua boiler and the heat exchan slight throughput by mean enough in order to allow for guarantee a constant throu avoiding disruption of the	Ily contain ger. In ord s of a re-citor equal le ghput, a bu process in	ns sal ler to ircula vels i uffer the c	ts and solid particles, prol prevent concentration of s tion line from the boiler t in boiler and column (and tank is required. This also column.	blems wit salts in the o the colu above the provides	th depositions (e boiler, it is re- mn. The steam e bundle of the the possibility	scale) may oc commended to line must be boiler). In ord to skim off oi	ccur in the o create a large ler to l,
Operational reliability	When the produced water enable removal of salt dep	contains la ositions.	arge a	mounts of salts, the instal	llation wil	l need to be shu	ıt down regul	arly to

Indication of										
	Costs		Inves	tment costs ([€]	CAPEX))	Explo	itation c [€ / y	costs ((vear]	OPEX)
			preser	it I	new		present	t	-	new
	gas platform, small		670 00	0	560 000		238 000	0	169 200	
	gas platform, large		990 00	00	840 000	0	401 400		276 900	
	oil platform		n.a.		n.a.		n.a.		n.a.	
	Cost/kg removed	0	as plat	form, small	Gas platfor		rm, large	Oil platform		tform
		Exi	isting New		Exi	sting	New	Exis	ting	New
		[€	[/kg]	[€/kg]	[€/	/kg]	[€/kg]	[€/k	(g]	[€/kg]
	dissolved oil	3	404	2 412	3	27	226	n.a	a.	n.a.
	dispersed oil	3 0		2 171	2	77	191			
	zinc equivalents	ic equivalents 5 0			1.2	212	836			
	Remarks: Energy consumption is relative reduced considerably when hea	hergy consumption is relatively high, despite the fact that part of the heat is recovered. Consuderably when heat from the process or from the exhaust gases from turbines is u								n can be
Cross media effects	Air	Air				se air en	issions. Afte	er the co	ndensc	or very few
	Energy		Appro	ximately 40	wh/m ³ ۲	produced	l water (main	nly for b	oiler).	
	Added chemicals		Scale i exchar high te	nhibitor is no ager and boil emperatures (eeded in o er as muc depender	order to h as pos nt on ma	prevent depo sible. Corros terials applie	osition of sion inhi ed).	f salts i bitors	in the heat in view of
	Waste		Sludge will deposit in the buffer tank. Salt depositions need to be removed from the boiler regularly (mechanically or using acids).							be removed
Other impacts	Safety		No sig	nificant influ	ence.					
	Maintenance		Mainte salt co costs in	enance on bo ntent in prod n case of NO	iler and h uced wate RM depo	eat exch er is hig sition.	anger may b h. Complicat	e consid ed proce	lerable edures	when the and high
Practical	Genera	al					Offsh	nore		
experience	Practical experience was gained production operations and on p	d in oi artial	nshore g streams	gas offshore.	Practica streams. end strea	l experie Current am treat	ence was gain there are not the the the the the the the the the th	ned offsl no offsh ons.	hore or ore app	n partial plications of
Conclusion	BAT				□ Emer	ging Ca	ndidate for E	BAT		
Literature source	[1]									

Table C - 9: Ad	sorption filters							
Principle	Adsorption filters may be applied for the removal of aliphatic hydrocarbons. Water is pumped through a process tank with filters. These filters contain chemically treated cellulose fibres which adsorb aliphatic hydrocarbons and, to a lesser extent, aromatic hydrocarbons. Regeneration of the filters is not possible since contaminants are adsorbed mainly chemically.							
Process diagram								
				filters				
	oil+water (Ð					w ater	
Pasia alamanta	Drogogg tonk with filters of							
basic elements	Process tank with lifters an	ia pump.						
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	Prod	luction chemicals lethanol lycols orrosion inhibitors nti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%] <10* <10* <10* <10*
	□ Nickel		D D	emulsifiers		Dispersed oi ■ Oil	1	R [%] 95
	<i>Remarks:</i> Dissolved components, ex solid particles > 20 µm, so *: When the filter is new, t content is high, the filter w	cluding an metimes i this remov vill soon b	romati in the val effi	c hydrocarbons, will not b form of scale. iciency may be considerat rated.	be remove oly higher	d. Heavy meta	ls are only re aromatic hyd	moved as lrocarbons
Technical details	Platform Produced water volume (d Required area (extra) (LxV Mass (extra)	esign) WxH)		Gas 1 (small) 1 m ³ /h 1,6 x 0,8 x 2 m 1,3 tonnes	Gas 6 2,1 2 1,9	2 (large) $5 \text{ m}^3/\text{h}$ x 1 x 2 m tonnes	Oil n.a	. 1 a.
Critical operational parameters	Filters require frequent rep efficiency dependent on co existing offshore installation	placement omposition ons.	. Partion n of pr	cles $> 20 \ \mu m$ will be remo roduced water, and should	oved but n be detern	nay also lead to mined by mean	o clogging. R s of field test	emoval s, i.e. on
Operational reliability	High, although frequent re process, in order to be able	placemen e to achiev	t is rec ve the	quired. Mainly applicable performance standard for	in situation dispersed	ons in cases of l oil.	problems in t	he regular

Indication of costs	<i>Remarks:</i> An adsorption filter with a capacity installation costs. OPEX are estimated	An adsorption filter with a capacity of 15 m³/h costs approximately € 45 000, excluding pump, equipment and installation costs. OPEX are estimated to be € 0,4 /m³. Air Energy for feed pump will increase air emissions.							
Cross media	Air	Energy for feed pump will increase air emissions.							
cifetts	Energy	Energy for feed put	np.						
	Added chemicals	None.							
	Waste	Saturated filters (al slightly radioactive	iphatic hydrocarbons, clay, sand, scale which is often – NORM).						
Other impacts	Safety	Risk of exposure to	benzene when filters are replaced.						
	Maintenance	Filters need freque	nt replacement.						
Practical	General		Offshore						
experience			Applied offshore on some installations.						
Conclusion	BAT Emerging Candidate for BAT								
Literature source	[1]]							

Table C - 10: M	embrane filtration								
Principle	Aliphatic hydrocarbons may be removed by means of membrane filtration. Water (low pressure, approximately 3,5 bar) is guided along a number of ceramic or synthetic filter elements which contain pores of $0,1 - 0,2 \mu m$. Build up of filter cake is avoided by a cross flow and a turbulent flow along the membrane surface. Part of the permeate is directed to the pressure-pulse system for cleaning of the membranes, the remaining part is discharged. The components that remain in the membrane after the pressure pulses need to be removed with chemicals periodically. The main part of aliphatic hydrocarbons and solids remain in the concentrate, which is directed to a settling tank, where the oil can be separated easily in view of the high concentrations.								
Process diagram				V					
	membrane filter chemical s buffer tank produced water tilter filtrate demical s buffer tank tilter								
Basic elements	Buffer tank, pre-filter, membrane filtration unit, pressure-pulse system, settling tank.								
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Prod M G C A D	duction chemicals Methanol Blycols Corrosion inhibitors Anti-scale solutions Demulsifiers	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] * * * * * R [%] 70-90	
	<i>Remarks:</i> Measurements during tests 10 mg/l.	revealed	remo	val of 150 mg/l to 15 mg/l	, from 11() mg/l to 30 m	g/l and from '	70 mg/l to	
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) $1 \text{ m}^3/\text{h}$ 2 x 2 x 2 m 4 tonnes	Gas 2 6 2 x 4 10	2 (large) m ³ /h x 2,5 m tonnes	Oil n.a	1	
Critical operational parameters	When produced water com strontium sulphate are diff for the removal of these su chemicals than polymer m relatively constant flow sp equipment in order to avoi oxygen, filtration of ferrou established empirically.	Aass (filled) 4 tonnes 10 tonnes When produced water contains large amounts of salts, membranes will clog easier. Especially barium sulphate and trontium sulphate are difficult to remove chemically. Chemicals for regeneration of membranes need to be suitable or the removal of these sulphates and clay particles. Ceramic membranes are more robust and more resistant to chemicals than polymer membranes. Pre-filtration is required in order to avoid erosion of the membranes. A elatively constant flow speed (buffer tank) is needed for optimal filtration. No oxygen should be able to enter the equipment in order to avoid formation of ferrous oxides. When the permeate for the back pulse is not free of oxygen, filtration of ferrous oxides is required. Duration and frequency of pressure pulses are critical and need to be established empirically.							
Operational reliability	During offshore testing, m reliable. It is expected that relatively intense supervisi hydrocarbons from salty w	embrane e this equip on is requ rater.	eleme oment tired.	nts were not fully regenera t would require frequent sh Experience onshore confir	ated, rende aut down f rm probler	ering this techr or maintenanc matic removal	nique insuffic e. Furthermo of aliphatic	iently re,	

Indication of									
costs	Costs		Inves	stment costs	(CAPEX)	Explo	oitation	costs (C	OPEX)
				[€]			[€ /	year]	
			preser	nt	new	presen	t		new
	gas platform, small		555 00	00	455 000	216 00	0	143 900	
	gas platform, large		915 00	00	745 000	448 20	0	3	28 000
	oil platform		n.a.		n.a.	n.a.			n.a.
	Cost/kg removed	(Gas platform, small		Gas platf	orm, large	Oil platform		tform
		Ex [€	isting E/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]	Exi ſ€/	sting /kg]	New [€/kg]
	aliphatic hydrocarbons BTEX	5	140	3 419	1 523	1 115	n	.a.	n.a.
	Remarks:								
Cross media	Air		Little o	effect on air	emissions in vie	w of low ener	gy cons	sumptio	n.
effects	Energy		Estima	ated energy c	consumption: 1,2	2 kWh/m ³ proc	luced v	vater.	
	Added chemicals		Chemi	cals for perio	odical cleaning	and conditioni	ng of n	nembrar	nes.
	Waste		Relativ relativ NORM filters	vely large an ely fast with 1. This woul to be regarde	nounts of sludge sulphates which d cause complex ed as waste after	in settling tar are hard to re- c cleaning pro- use.	k. Men emove a cedures	nbranes and may s or remo	are clogged v contain oval. Pre-
Other impacts	Safety		Worki exposi	ng with vario	ous chemicals, v ne when filters a	which may cau	se inju s are rej	ry (burn placed.	s). Risk of
	Maintenance		Relativ remov	vely high ma al of sludge	intenance: repla from settling tar	cement of filte k.	ers and	membra	anes,
Practical	Gene	eral				Offsl	iore		
experience	Well-known and applied prin in onshore process industry.	nciple fo	or water	treatment	A number of te Netherlands, a membrane clog	ests were carri ll tests reveale gging.	ed out o d probl	offshore lems wit	e in the th
Conclusion	D BAT				Emerging C	andidate for H	BAT		
Literature source	[1]	BAT Emerging Candidate for BAT [1]							

Table C - 11: V	/-Tex									
Principle	Gas enters the circular flat vortex chamber of a gas liquid contactor tangentially, through a series of vanes, evenly located around the chamber rim. The gas follows the circular contour of the chamber and moves inwards towards an outlet port, mounted on the central axis of the chamber. This relatively slow radial movement increases the tangential velocity, which can increase to as much as 15 m/s. At the same time, the liquid phase of the scrubbing liquor is sprayed into the centre of the chamber forming droplets, which fly out towards the chamber periphery, making contact with the rotating gas. Closing contact speeds can be high, allowing intense mass and heat transfer. As they continue to pass trough the spinning gas, the droplets develop a tangential velocity component and this generates a centrifugal acceleration which disentrains the drops by spinning them towards the chamber wall.									
Process diagram				ias phase outle	et					
	Tangential gas phase inlet Scrub liquor reservoir Scrub liquor pump									
Basic elements	Stripper with integral sum	p mounte	d on a Carbon Steel skid, electr	ical pre-heat	ter, centrifugal pumps					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	 Production chemicals ■ Methanol □ Glycols □ Corrosion inhibitors □ Anti-scale solutions 	R [%]	Oil Dissolved oil BTEX Benzene PAHs	R [%]				
	□ Nickel		Demulsifiers		Dispersed oil	R [%]				
	Remarks:									
Technical details	Throughput (m ³ /da	y)	Weight (dry / wet, T	e)	Overall size l x h	x w (m)				
	10		1,0 / 1,5		2,0 x 1,15 x	2,0				
	100		2,25 / 3,0		2,75 x 1,55 x	2,78				
Critical operational parameters	The column has a design t construction will be carbo	emperatu n steel.	re range of -10 °C to 50°C, a do	esign pressu	re of 3 bar. The material	of				
Operational reliability	The result of several trails hydrocarbons (both aroma	showed t tics and a	hat this technology was highly liphatic hydrocarbons) from suc	effective in the second s	removing a wide range o	f				

Indication of costs									
	Costs	Inves	tment costs (CAPEX)	Explo	itation costs (OPEX)		
			[€]			[€ / year]			
		preser	nt	new	present	t	new		
	gas platform, small								
	gas platform, large		NC	o data on model s	situation avai	lable			
	Cost/kg removed	Gas plat	form, small	Gas platfor	rm, large	Oil pla	ntform		
		Existing	New	Existing	New	Existing	New		
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]		
	dissolved oil	No data on model situation available							
	dispersed oil								
	Remarks:								
Cross media effects	Air								
	Energy								
	Added chemicals								
	Waste								
Other impacts	Safety								
	Maintenance								
Practical	Genera	1			Offsh	ore			
experience									
Conclusion	D BAT			Emerging Ca	ndidate for E	BAT			
Literature source	[3]								

Table C - 12: Fi	lter coalescer								
Principle	Dispersed oil may be removed from produced water by means of a filter coalescer. The coalescer is usually equipped with a column packed with fine material. Small oil droplets (< 10 μ m) conglomerate in the packed material to greater droplets, which are easier to separate. The technique is often used only as coalescer, i.e. to enlarge oil droplets, which can be separated in a next step. This technique is less suitable for large flows. In order to comply with the performance standard, a subsequent treatment step is required. This technique is not suitable for removal of dissolved components as benzene and heavy metals.								
Process diagram									
	oil coalescer water oil/water								
Basic elements	Cask packed with coalesce	er materia	1.						
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead	R [%]	Prod	duction chemicals Iethanol Iycols orrosion inhibitors nti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%]	
				emulsifiers		Dispersed oil	l	R [%]	
						■ Oil		30	
	<i>Remarks:</i> A filter coalscer only remo	oves large	r oil d	roplets (> 10 μm) and ofte	en actual r	emoval takes p	lace in a nex	t treatment	
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) 1 m ³ /h 1 x 1 x 2 m 2 tonnes	Gas 2 6 1,5 x 1 3 t	2 (large) m ³ /h ,5 x 2,5 m tonnes	Oil 175 r n.a	1 n ³ /h a.	
Critical operational parameters	Proper operation depends equal to the pressure in the results achieved in the coa	on droplet e next trea lescer. Ap	t size (tment oplical	of the input. Not suitable f step, since large difference bility is often established e	for emulsing tes in prese empiricall	ons. Pressure in sure pumps an y.	n coalescer p d valves may	referably undo the	
Operational reliability	Reliability is high as long	as the filte	er pac	k is not contaminated.					

Indication of costs	Remarks:		
Cross media effects	Air	None.	
	Energy	None.	
	Added chemicals	None.	
	Waste	Very little (only wh	en pack material is replaced).
Other impacts	Safety	None.	
	Maintenance	Sand, clay and scale replacement of the slightly radioactive	e are hard to remove, rendering frequent cleaning or filter material necessary. Removed material may be (NORM).
Practical	General		Offshore
experience	Well-known and applied, although estimations may be hard to predict.	ffect in individual	Tested offshore for a short period, using centrifuge as subsequent treatment step.
Conclusion	D BAT		Emerging Candidate for BAT
Literature source	[1]		

Table C - 13: Ct	tour process system										
Principle	The Ctour Process System is based on the extraction of hydrocarbons from water using gas condensate. The gas condensate acts as extraction-solvent. The principle of the extraction process is to add an immiscible solvent in a solution that will absorb the solute (in this case dissolved oil, BTEX etc.) because of the higher affinity towards the extraction solvent. The extraction process is based on thermo dynamical equilibrium between two liquid phases and s thus dependent on the actual composition of the extraction-solvent (and of the solution). In the Ctour process the extraction solvent is the gas condensate taken from the scrubber. The actual efficiency of the extraction process will herefore depend on composition of the condensate, which in turn is dependent on the operating pressure and emperature of the scrubber. Condensate normally extracted from a gas train scrubber, is injected upstream of the de-oiling hydrocyclones. The condensate acts as a solvent, and the oil will have a high affinity towards the condensate. The condensate and the oil form large large actual condensate that are acceled upstreame hydrogeneous the strategiene.										
D P	oil form large, low-density	I form large, low-density droplets that are easily removed by the downstream hydrocyclone.									
Process diagram	Formatio Weil Liqu	Concensate n High Pressure Sep	Te di Traum	a orr Consistals D Consistals To Produced Waar Treatment Hydracydone To Produced Waar Treatment	Logical Control Contro	pas ment Suction Scrubber of Further Treatment					
Basic elements	High and low pressure sep	arators, hi	igh pre	essure pump, static mixe	er, hydrocy	clone					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Prod M G C C A D	luction chemicals ethanol lycols prrosion inhibitors nti-scale solutions emulsifiers	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil I	R [%] * * * * R [%] *			
Technical details	Remarks: *: Removal efficiencies of scale conditions. Offshore amongst others, dependent lead to an increase of BTE amount of aromatics in pro- expected that future develo- in order to reduce the pote discharge stream. Platform	90% (disp tests (Non t on the co X under co oduced wa opment mantial trans	persed rway, 2 omposi certain ater fro ay reso sfer of	oil) and 95% (BTX, P. 2000) revealed much lo tion of the condensate of circumstances). CTour on offshore installations olve the current problen light component (such a Gas 1 (small)	AH) have b wer remova used for ext is not yet g s. However, ns. There m as BTX con Gas	een reported un il efficiencies, a raction (in fact enerally applic the test results ight be a need f nponents) from 2 (large)	ider laborator and the proce the condensa able for redu are promisir for auxiliary the condensa	y and pilot ss is, te may cing the g and it is equipment ate to the			
i cennicai detaiis	Produced water volume (d Required area (extra) (LxV Mass (extra)	esign) VxH)		$1 \text{ m}^3/\text{h}$	6	m^{3}/h	175 r	n ³ /h			
Critical operational parameters	High pressure re-circulation Residual condensate in the atmospheric pressure and	on equipm on underfloot the given	ent (> w of th temper	10 bar) is required. Pres the hydrocyclone must en rature of the water.	ssure in prov vaporate co	duced water mu mpletely in the	ist be above a degasser at	10 bar.			
Operational reliability	Depends on condensate co the hydrocyclone reject co pressure and temperature a	mposition ntrol valv as the proc	n. In th re. In th duced	e liquid state the conde ne gaseous state the con water.	nsate must i idensate sho	remain in the re ould have the sa	eject line upst me atmosphe	ream of eric			

Indication of							
costs	Costs	Inves	tment costs ((CAPEX)	Explo	Exploitation costs (OPEX)	
		[€]		· · · ·		[€ / year]	
		presen	ıt	new	presen	t new	
	gas platform, small	No data on model situation available				lable	
	oil platform						
	Cost/kg removed	Gas platf	form, small	Gas platfor	rm, large	Oil platform	
		Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]
	dissolved oil						
	dispersed oil		Ν	o data on model s	situation avai	lable	
	zinc equivalents Remarks:						
	itemanas.						
Cross media	Air E		Energy to generate high pressure will increase air emissions.				
	Energy	Energy	Energy to generate high pressure (10 bars).				
	Added chemicals	No nee	ed for floccu	lants and de-emul	lsifiers.		
	Waste						
Other impacts	Safety						
	Maintenance						
Practical	General				Offsl	nore	
experience	Not yet generally applicable, tes	st results are	promising.				
Conclusion	BAT			Emerging Candidate for BAT			
Literature	[5]						
source							

2. References

- 1 Stand der Techniek Offshore Productiewater Olie- en Gaswinningsindustrie (Best Available Techniques Produced Water Oil and Gas Industry), CIW VI subwerkgroep SdT Offshore productiewater, 14 January 2002
- 2 Environmental aspects of on and off-site injection of drill cuttings and produced water, OSPAR 2001, ISBN 0 946956 69 3
- 3 Removal of hydrocarbons from produced water, OIC 01/8/Info.3, Oslo, 13-16 February 2001
- 4 Twister A supersonic separator for the de-hydration of gas, OIC 01/8/Info.6, Oslo 13-16 February 2001
- 5 Background document on aromatic substances including PAH in produced water, OIC 01/8/8, Oslo, 13-16 February 2001

Annex 1: Basis for figures in fact sheets

1. Model situations

Three model situations were established, i.e.:

- 1. small gas installation (based on 26 gas installations with small produced water discharges);
- 2. large gas installations (based on 27 gas installations with larger produced water discharges);
- 3. oil installations (based on 7 oil installations).

For each model situation, representative produced water quality and quantity figures were established. For water quality figures, the mediane and the 90 percentile values were established for each component, whereas the average design flow was used as point of departure for quantity values. For establishment of cost figures, new and existing offshore installations were distinguished.

The following points of departure were established on the basis of a considerable amount of data. It is noted that these data may not be representative for the all produced water discharges from all types of installations in the OSPAR area; the model situations were established on the basis of a limited amount of installations in a limited area. Other model situations may need to be defined when modifications of this background document are considered.

Model situation	Average volume m ³ /h	Design volume m ³ /h
Gas platform, small	0,2	1
Gas platform, large	1,4	6
Oil platform	150	175

Concentrations and loads for gas platform, small

		concentrations			load per year	
		median	90-percentile		median	90-percentile
Volume*	m ³ /u	0,2	n.a.			
Benzene	mg/l	45	250	kg/year	79	438
BTEX	mg/l	50	300	kg/year	88	526
Cadmium	mg/l	0,0025	0,250	kg/year	0,004	0,44
Mercury	mg/l	0,0011	0,004	kg/year	0,002	0,007
Lead	mg/l	0,025	2,2	kg/year	0,04	4
Nickel	mg/l	0,040	0,080	kg/year	0,07	0,14
Zinc	mg/l	1,3	90	kg/year	2	158
Aliphatic HC's	mg/l	30	40	kg/year	53	70

* average volume in 1998

Concentrations and loads for gas platform, large

		concentrations			load per year	
		median	90-percentile		median	90-percentile
Volume*	m ³ /	1,4	n.a.			
Benzene	mg/l	110	520	kg/year	1 350	6 375
BTEX	mg/l	130	550	kg/year	1 600	6 745
Cadmium	mg/l	0,0025	200	kg/year	0,030	2,45
Mercury	mg/l	0,0011	6	kg/year	0,013	0,074
Lead	mg/l	0,03	9	kg/year	0,4	110
Nickel	mg/l	0,030	60	kg/year	0,37	0,74
Zinc	mg/l	2	60	kg/year	25	735
Aliphatic HC's	mg/l	30	40	kg/year	370	490

* average volume in 1998

		concentrations			load per year	
		median	90-percentile		median	90-percentile
Volume	m ³ /	150	n.a.			
Benzene	mg/l	1,5	1,9	kg/year	1 970	2 500
BTEX	mg/l	2,5	3	kg/year	3 285	3 940
Cadmium	mg/l	0,0004	0,0006	kg/year	0,53	0,72
Mercury	mg/l	0,00003*	-	kg/year	0,039	-
Lead	mg/l	0,01*	0,025	kg/year	13,1	33
Nickel	mg/l	0,005*	-	kg/year	6,6	-
Zinc	mg/l	0,02*	0,1	kg/year	26,3	131
Aliphatic HC's	mg/l	25	40	kg/year	32 850	52 560

Concentrations and loads for oil platforms

* = value established by judgement, below detection limit

The concentrations referred to in the column 'median' have been used for the model situations.

2. Cost figures

For each possible measure, model situations were established (where possible / relevant), including cost figures. Capital expenses (CAPEX) and operational expenses (OPEX) were estimated on the basis of market conformity (price level 2000). Estimates were based on price indications from suppliers, designers and fitters. Furthermore, use was made of data from information and experiences in the industry and other parties involved in offshore oil and gas activities.

CAPEX

Investment estimates for each technique is based on the following costs:

- design and project management;
- equipment;
- transport;
- fitting; and
- unforeseen.

Design and project management costs are dependent on the complexity of the installations, but were estimated to be 10% of the total investments.

For each technique, the treatment system will be formed of specific equipment and other equipment, necessary for proper functioning of the apparatus. These may be buffer tanks and pumps. Prices were based on information from more than one supplier where possible.

Transport costs are important when the technique is installed on existing offshore installations. For new installations, transport costs were assumed 0.

Fitting activities are dependent on the complexity of the installation, and will differ per technique and per situation (existing or new platform, etc.).

Use of space on offshore installations involves costs. For two exemplary situations, investment for use of space on a new platform was calculated.

Part of the investment costs cannot be estimated. Therefore, unforeseen costs have been incorporated in the calculations. On existing offshore installations, more unforeseen circumstances may be expected, therefore these costs may be higher than on new installations. For existing offshore installations unforeseen costs were estimated to be 15% of the total costs, for new installations these are estimated to be 10%.

Capital expenses of investments were calculated on the basis of the annuity method, taking account of the following situations:

		New platform	Existing platform
Depreciation period	[years]	10	5
Interest rate	[%]	10	10
Annuity	[% of total investment]	16,3	26,4

Total investment costs are the sum of design and project management costs, equipment, transport, fitting and unforeseen costs. The calculations above are based on the assumption that no rest value will remain. Re-use of parts is limited, rest value will usually be the scrap value and is assumed zero.

OPEX

All costs were based on the price level of the reference year 2000 (the Netherlands). For future estimates, price escalations of approximately 3% per year should be taken into account. Points of departure for calculation of yearly operational costs are presented in the table below. For each technique and model situation, yearly operational expenses were calculated (where possible).

	New offshore installation	Existing offshore installation
depreciation	0,163 x I	0,264 x I
maintenance	ϵ/m^3 (i.s./e.f.) x Q	\oint/m^3 (i.s./e.f.) x Q
spare parts	ϵ/m^3 (i.s./e.f.) x Q	ϵ/m^3 (i.s./e.f.) x Q
use of chemicals	€/kg x kg/m ³ (i.s.) x Q	€/kg x kg/m ³ (i.s.) x Q
use of potable water	$ \in$ 3,40 /m ³ x amount m ³ /year (i.s.)	$ \in 3,40/\text{m}^3 \text{ x amount m}^3/\text{year (i.s.)} $
other regular uses	i.s.	i.s.
operation (crew)	€ 32,/uur x amount hours/year (e.f.)	€ 32,/hour x amount hours/year (e.f.)
energy	$ \in 0,14/kWh \ x \ kWh/year \ (i.s.) $	$ \in 0,14/kWh \ x \ kWh/year \ (i.s.) $
Removal of sludge regular quantity 	€ 365,/ton x 1 000 kg/ton x amount kg sludge/m ³ (e.f.) x Q;	€ 365,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q;
 small quantity (< 3 500 kg/year) 	€ 680,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q;	€ 680,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q;
Mercury containing sludge	€ 1 140,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q	€ 1 140,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q
Radioactive waste	€ 15 000,/ton x 1 000 kg/ton x amount kg m ³ (e.f.) x Q	€ 15 000,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q

I : total investment costs in Euro (CAPEX);

Q : yearly treatment flow in m³/year;

i.s. : information supplier;

e.f. : best estimate by authors fact sheet.

Usually, yearly OPEX will amount approximately 35 – 45% of the CAPEX (I).