

Protecting and conserving the North-East Atlantic and its resources

Background document on Tributlytin (TBT) in sediment, Swedish Quality Standard

Background document on Tributlytin (TBT) in sediment, Swedish Quality Standard

Acknowledgements

This report was prepared by Sara Sahlin and Marlene Ågerstrand of the Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University.

OSPAR Convention

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the "OSPAR Convention") was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. The Contracting Parties are Belgium, Denmark, the European Union, Finland, France, Germany, Iceland, Ireland, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Convention OSPAR

La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. Les Parties contractantes sont l'Allemagne, la Belgique, le Danemark, l'Espagne, la Finlande, la France, l'Irlande, l'Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d'Irlande du Nord, la Suède, la Suisse et l'Union européenne.

Preface

The Department of Environmental Science and Analytical Chemistry (ACES) at Stockholm University was commissioned, by the Swedish Agency for Marine and Water Management (SwAM), to prepare a Water Framework Directive (WFD) sediment Environmental Quality Standard (EQS) dossier in English for Tributyltin (TBT). Compared to the existing European EQS dossier for tributyltin compounds where sediment toxicity is also addressed this dossier includes new data delivered to SwAM by Golder (in 2013 and 2014) and calculations performed by SwAM. Besides translating the information from Golder and the calculations performed by SwAM from Swedish into English, correction of typos and restructuring of text has been done to fit into the EQS dossier format used at the European level.

http://dome.ices.dk/osparmime2018/help_ac_sediment_TBSN_EQS_background.pdf

Contents

B/	ACKGROUND DOCUMENT ON TRIBUTLYTIN (TBT) IN SEDIMENT, SWEDISH QUALITY STANDARD1
PF	REFACE
EX	ECUTIVE SUMMARY
RÉ	ÉCAPITULATIF5
1.	INTRODUCTION6
2.	PROPOSED QUALITY STANDARDS (QS)7
3.	EFFECTS AND QUALITY STANDARDS8
	3.1 Critical study
	3.2 QS _{SEDIMENT} DERIVATION
	9.1.05 9
	3.4 QSsediment DERIVATION USING EQUILIBRIUM PARTITIONING (EQP)
4.	IDENTIFICATION OF ISSUES RELATING TO UNCERTAINTY IN RELATION TO THE QSS DERIVED11
5.	IDENTIFICATION OF ANY POTENTIAL IMPLEMENTATION ISSUES IN RELATION TO THE QSS DERIVED11
6.	REFERENCES
7.	SUPPORTIVE INFORMATION: ECOTOXICITY DATA14
8.	SUPPORTIVE INFORMATION: KOC VALUES26
9.	SUPPORTIVE INFORMATION: EQP CALCULATIONS
	9.1 CALCULATIONS

Executive Summary

Tributyltin (TBT) compounds are included in the list of priority substances for which Environmental Quality Standards (EQS) are implemented for surface water through the Directive 2008/105/EC (the EQS Directive). Nevertheless, TBT tends to strongly bind to sediment, and it is therefore not degraded to the same extent as in water. Because TBT accumulates in sediment, benthic organisms can be assumed to be exposed to higher levels compared to pelagic organisms.

The Swedish Agency of Marine and Water Management (SwAM) has established a national EQS for TBT in sediment from a QS_{sediment} that is based on ecotoxicity studies on benthic organisms. The Swedish sediment EQS for TBT is 1.6 μ g/kg dry weight (expressed as 5% organic carbon) considering both marine and freshwater sediments.

The sediment EQS was included in Swedish legislation in 2015.

On the recommendation of the Working Group on Monitoring & on Trends and Effects of Substances in the Marine Environment (MIME) and the Hazardous Substances and Eutrophication Committee, OSPAR has adopted Sweden's Quality Standard as a sufficiently robust basis for assessing TBT in sediment for the next Quality Status Report.

Récapitulatif

Les composés du tributylétain (TBT) sont inclus dans la liste des substances prioritaires pour lesquelles des normes de qualité environnementale (NQE) sont mises en œuvre pour les eaux de surface par la directive 2008/105/CE (la directive NQE). Néanmoins, le TBT a tendance à se lier fortement aux sédiments, et il n'est donc pas dégradé dans la même mesure que dans l'eau. Le TBT s'accumule dans les sédiments, et on peut donc supposer que les organismes benthiques sont exposés à des niveaux plus élevés que les organismes pélagiques.

L'Agence suédoise de gestion de la mer et des eaux (SwAM) a établi une NQE nationale pour le TBT dans les sédiments à partir d'une QS_{sediment} qui est basée sur les études d'écotoxicité sur les organismes benthiques. La NQE suédoise pour le TBT dans les sédiments est de 1.6 µg/kg poids sec (exprimée en 5 % de carbone organique), en tenant compte à la fois des sédiments marins et d'eau douce

La NQE pour les sédiments a été incluse dans la législation suédoise en 2015.

En se fondant sur la recommandation du Groupe de travail surveillance et tendances et effets des substances dans le milieu marin (MIME) et du Comité substances dangereuses et eutrophisation, OSPAR a adopté la norme de qualité suédoise comme base suffisamment solide pour évaluer le TBT dans les sédiments pour le prochain Bilan de Santé (Quality Status Report).

1. INTRODUCTION

Tributyltin (TBT) compounds are included in the list of priority substances for which Environmental Quality Standards (EQS) are implemented for surface water through the Directive 2008/105/EC (the EQS Directive). The EQS dossier for TBT included a preliminary $QS_{sediment}$ derived using the Equilibrium partitioning (EqP) approach, with QS set to 0.02 µg/kg (European Commission 2005). This value, however, was considered preliminary and was not implemented in the Directive 2008/105/EC. Nevertheless, TBT tends to strongly bind to sediment, and it is therefore not degraded to the same extent as in water. Because TBT accumulates in sediment, benthic organisms can be assumed to be exposed to higher levels compared to pelagic organisms.

The Swedish Agency of Marine and Water Management (SwAM) has established a national EQS for TBT in sediment from a QS_{sediment} that is based on ecotoxicity studies on benthic organisms (HVMFS 2013:19). The background data on Koc and toxicity studies associated with the establishment of the QS_{sediment} was collected and evaluated by the consultant Golder in 2013 and 2014. SwAM calculated the EQS for TBT in sediment in collaboration with experts at the Swedish Environmental Protection Agency. The references and calculations were included in an annex that was sent on public consultation¹ in Sweden in July 2014. After the consultation, the sediment EQS was included in national legislation in 2015 (by HVMFS 2015:4 revising HVMFS 2013:19)².

TBT: Chemical identity									
CAS no.	36643-28-4 (cation)								
Kow	3.1-4.1 ¹ (Log Kow)								
Кос	4.6-5.3 (log Koc) ²								
	(≈ 40000 – 200 000 Koc)								

300-15000001

1 = European Commission, 2005. 2 = Brändil et al., 2009.

¹ Available from SwAM referring to file no 3383-17.

² Havs- och vattenmyndighetens föreskrifter (HVMFS 2013:19) om klassificering och miljökvalitetsnormer avseende ytvatten.

2. PROPOSED QUALITY STANDARDS (QS)

2.1 Environmental Quality Standard (EQS)

The proposed sediment EQS for TBT is 1.6 μ g/kg dry weight (expressed as 5% organic carbon) considering both marine and freshwater sediments. The TOC content of 5% represents a standard sediment according to European Communities (2011). This value is consistent with Swedish coastal levels of TOC (e.g. Jonsson et al., 2003), although deviations may occur (from a few percent to approximately 20%). In cases where TOC differs from 5%, the measured TBT concentration is multiplied with the ratio of TOC (5/ actual TOC level), before comparing to the EQS.

	Value	Comments
Proposed EQS _{sediment} [µg.kg ⁻¹ at 5% TOC]	1.6	See section 3.2
$QS_{sediment}$ based on EqP [µg.kg ⁻¹ at 5% TOC]	0.4	See section 3.4

Background document on Tributlytin (TBT) in sediment, Swedish Quality Standard

3. EFFECTS AND QUALITY STANDARDS

In the literature search conducted in 2013, 10 studies were available investigating toxicity to 9 freshwater species, 3 marine species and marine meiobenthic communities (table S1). All studies were assessed as *reliable with restrictions* using the Klimisch method (Klimisch et al., 1997). The total dataset revealed that the species showing highest sensitivity to TBT was the freshwater Gastropoda: *Potamopyrgus antipodarum.*

The available marine sediment data suggest that marine species are less sensitive compared to freshwater species. However, the marine dataset lacked data for the most sensitive taxonomic group; Gastropoda. It was therefore assumed that the use of the available marine data in the derivation would lead to an underestimation of QS_{marine}. When marine ecotoxicity data is lacking, a larger AF is required compared to freshwater sediment derivation. Nevertheless, in the substance datasheet from the European Commission (2005) it was concluded that freshwater and marine species show similar sensitivity to TBT compounds. Furthermore, TBT in marine water was assumed to have reduced bioavailability due to the salinity and increased pH. Based on this, data for freshwater and marine species were pooled and the derived EQS is assumed to protect organisms in both marine and freshwater sediments.

3.1 Critical study

Duft et al. (2003) investigated effects from TBT exposure on the freshwater Gastropoda *Potamopyrgus antipodarum* using artificial spiked sediment with a duration of 2, 4 and 8 weeks. The most sensitive endpoint was the number of new embryos (without shells) after 4 weeks of exposure. Seven concentrations were used in the bioassay and the effect was seen already at the lowest concentration (EC_{10} of 0.98 µg/kg dw). The EC_{10} was higher after 8 weeks compared to 4 weeks (2.98 µg/kg dw), which was assumed to be due to that TBT sorb to the sediment after longer duration. It is plausible that the bioavailability in the environment is reduced with time (i.e. "ageing"). In addition, the dose-response curve was clearer after 8 weeks compared to 4 weeks and analysis of sediment concentration was not undertaken until week 8. Based on this, the 8 week EC_{10} was assumed to be more reliable. This EC_{10} was recalculated to 16 µg/kg dw expressed as 5% TOC (a TOC content of 2.3% was used in the bioassay).

3.2 QS_{sediment} derivation

An AF of 10 was assessed as sufficient, since effect data for three chronic freshwater studies were available investigating at least three sediment-dwelling species representing different living-conditions (*Chironomus riparius, Monoporeia affinis, Hyalella azteca, Hexagenia limbata, Physella gyrina, Tubifex tubifex, Daphnia magna*) (European Communities, 2011). The marine dataset was also assumed to fulfill the use of AF 10 since four chronic marine studies were available (*Echinocardium cordatum, Amandia brevis, Corophium volutator,* and benthic nematode communities) (European Communities, 2011).

Using the critical study for *Potamopyrgus antipodarum* with EC_{10} of 16 µg/kg dw and AF 10 resulted in a QS of 1.6 µg/kg dw at 5% TOC. This EQS is assumed to protect both freshwater and marine sediment-dwelling species.

3.3 Field evidence

When deriving EQS for the sediment compartment, field- and mesocosms data should be considered according to the European Communities (2011). Analysis of effects caused by TBT (i.e. imposex of Gastropoda) and TBT levels in sediment were available from the West coast of Sweden (marine sediment).

TBT gives raise to imposex in several water-living gastropods, which means that females becomes masculinized (developing penis). The level of imposex is assessed based on the stage of the vas deferens formation. The formation is assessed based on up to 9 different stages depending on species, where 0 is the normal female without vas deferens. For the Nassariidae (family belonging to Gastropoda) there are 5 different stages (0-4) and a vas deferens sequence index (VDSI) of \leq 0.3 is considered unaffected (OSPAR, 2010).

Field studies analyzing effects of TBT of the snail Nassariidaeand levels of TBT in sediment has been carried out in marinas, located in Fiskebäckskil and Grebbestad (Magnusson et al., 2012). Lowest levels of TBT (1.8 μ g/kg dw) and lowest degree of imposex (VDSI of 0.3) was detected in Fiskebäckskil, with a general decrease of imposex and TBT concentrations with distance from the inner submarine. The lowest VDSI (0.4) in Grebbestad was observed in the reference site where TBT was measured at a level of 2.6 μ g/kg dw. Higher VDSI (1.6 and 0.5) was detected at other locations, however, these locations had reduced levels of TBT detected in the sediment (approximately 0.5 μ g/kg dw). The TOC content was not analyzed but it is plausible that TOC (i.e. the bioavailability) could explain these unexpected results (i.e. higher levels of TBT did not show increased effect in Grebbestad). Based on these field observations it was concluded that a 5% normalized value of 1.6 μ g/kg dw is reasonable since effect levels in field studies were in the same range.

This EQS was further supported by the threshold value given in the integrated assessment of TBT-levels within OSPAR (2008), of which sediment levels under 2 μ g/kg is assumed to correspond to VDSI < 0.3 (of Nassariidae).

3.4 $QS_{sediment}$ derivation using Equilibrium partitioning (EqP)

Calculation based on the surface water $EQS_{fw eco}$ using the Equilibrium partitioning approach was also undertaken, according to European Communities (2011) (although, it is stipulated that EQS primarily should be based on ecotoxicity studies rather than such calculation). In this context, EqP calculation was problematic due to the large variation of Koc reported in the literature. Due to the ionizable properties of TBT the partitioning between water and sediment is highly influenced by TOC, pH, salinity and also the concentration of TBT (Langston and Pope, 1995). It can therefore be assumed that TBT is more tightly bound to marine sediments compared to freshwater sediments with lower pH.

In the dossier from the European Commission (2005), the reported Koc varied between 300 and 150,000 and the EqP calculation was based on 1084, which resulted in a value of 0.02 μ g/kg dw. This value is likely highly conservative, taking into consideration the conditions normally prevailing in the environment. A complementary literature search was performed aiming to compile reliable Koc values representing Swedish conditions (table S2). The Koc of 40 000 (log value= 4.6) was selected for the calculation, based on a Norwegian investigation (Brändli et al., 2009). Based on this Koc the EqP calculations resulted in an EQS of 0.4 μ g/kg dw, which is four-fold lower than the EQS value based on ecotoxicity studies (see section 9 for EpP calculations), but 20-fold higher than the preliminary value set by the European Commission (2005).

4. IDENTIFICATION OF ISSUES RELATING TO UNCERTAINTY IN RELATION TO THE QSs DERIVED Not specified.

5. IDENTIFICATION OF ANY POTENTIAL IMPLEMENTATION ISSUES IN RELATION TO THE QSS DERIVED

A standard quantification limit of TBT in sediment is 1 μ g/kg. The EQS of 1.6 μ g/kg does therefore not fulfil the requirements of quantification limits of EQS times 0.3, set according to 2009/90/EG (or NFS 2006:11). However, the quantification limit for water is significantly worse in relation to the EQS. Analytical methods can normally analyze 0.001 μ g/L, while the EQS is 0.0002 μ g/L.

6. **REFERENCES**

Bangkedphol S, Keenan HE, Davidson C, Sakultantimetha A, Songsasen A. 2009. The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere Vol. 77, pp 1326–1332

Bangkedphol S, Keenan HE, Davidson C, Sakultantimetha A, Dyer M and Songsasen A. 2009. Development and application of an analytical method for the determination of partition coefficients of tributyltin in the Forth and Clyde Canal, Glasgow, Scotland. Journal of ASTM International Vol 6

Bartlett AJ, Borgmann U, Dixon DG, Batchelor SP, Maguire JR. 2004. Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: Survival, growth, and reproduction. Environmental Toxicology and Chemistry. Vol. 23 (12), pp 2878-2888

Bartlett AJ, Borgmann U, Dixon DG, Batchelor SP, Maguire JR. 2005. Toxicity and bioaccumulation of tributyltin in Hyalella azteca from freshwater harbour sediments in the Great Lakes Basin, Canada. Canadian Journal of Fisheries and Aquatic Science Vol. 62 (5), pp 1243-1253

Bartlett AJ, Borgmann U, Dixon DG, Batchelor SP, Maguire JR. 2007. Comparison of Toxicity and Bioaccumulation of Tributyltin in Hyalella azteca and Five Other Freshwater Invertebrates. Water Quality Research Journal of Canada Vol. 42(1), pp 1-10

Berg M, Arnold CG, Müller SR, Mühlemann J, Schwarzenbach RP. 2001. Sorption and desorption of organotin compounds in sediment-pore water systems. Environmental Science and Technology Vol. 35

Brändli RC, Breeveld GC, Cornelissen G. 2009. Tributyltin sorption to Marine Sedimentary Black Carbon and to Amended Activated Carbon. Environmental Toxicology and Chemistry Vol 28, pp 503-508

Burton ED, Phillips IR, Hawker DW. 2004. Sorption and desorption behavior of tributyltin with natural sediments. Environmental Science and Technology Vol. 38

Burton ED, Phillips IR, Hawker DW. 2005. In-Situ Partitioning of butyltin compounds in estuarine sediments. Chemosphere Vol. 59, pp 585-592

Burton ED, Phillips IR, Hawker DW. 2006. Tributyltin partitioning in sediments: Effect of aging Chemosphere Vol. 63, pp 73-81

Dai SG, Sun HW, Wang YQ, Chen WP Li N. 2003. Sorption behavior of butyltin compounds in estuarine environments of the Haihe River, China. Cai Y, Braids OC (Eds.) ACS Symposium Series. pp. 370-387. Washington, American Chemical Society.

Dowson PH, Bubb JM, Lester JN. 1993. A study of the partitioning and sorptive behaviour of butyltins in the aquatic environment. Applied Organometallic Chemistry Vol. 7, pp 623-633

European Commission. 2005. Tributyltin compounds (TBT-ion), Priority Substance No. 30. Environmental Quality Standard (EQS): Substance Data Sheet. Final Version of 15.01.2005

European Communities. 2011. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance document 27. Technical guidance for deriving environmental quality standards. Technical report 2011-055.

Hoch M, Alonso-Azcarate J, Lischick M. 2002. Adsorption behavior of toxic tributyltin to clay-rich sediments under various environmental conditions. Environmental Toxicology and Chemistry Vol. 21, pp 1390–1397

Hoch M, Schwesig D. 2004. Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Applied Geochemistry Vol. 19, 323–334

Klimisch HJ, Andreae M, Tillmann U. 1997. A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data. Regulatory Toxicology and Pharmacology Vol. 25, pp 1-5

Langston WJ, Pope ND. 1995. Determinants of TBT adsorption and desorption in estuarine sediments. Marine Pollution Bulletin. Vol. 31, pp 32-43

Lilley TM, Ruokolainen L, Pikkarainen A, Laine VN, Kilpimaa J, Rantala MJ, Nikinmaa M. 2012. Impact of Tributyltin on Immune Response and Life History Traits of Chironomus riparius: Single and Multigeneration Effects and Recovery from Pollution. Environmental Science and Technology Vol. 46 (13), pp 7382-7389

Magnusson M, Cato I, Granmo Å. 2012. Sekundär spridning och effekter av organiska tennföreningar från småbåtshamnar. Marine Monitoring AB, Rapport 2012:1. 26 sid. Lysekil.

Meador JP, Rice CA. 2001. Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment. Marine Environmental Research Vol. 51(2), pp 113-129

OSPAR 2008. 2007/2008 CEMP Assessment: Trends and concentrations of selected hazardous substances in sediments and trends in TBT-specific biological effects. OSPAR Commission 2008.

OSPAR 2010. EcoQO on imposex in dogwhelks and other selected gastropods. Quality status report. Evaluation of the OSPAR system of EcoQOs for the North Sea.

https://qsr2010.ospar.org/media/assessments/p00406_supplements/p00406_suppl_6_imposex_dogwhelks.pd <u>f</u>

Radke B, Wasik A, Jewell LL, Paczek U, Namiesnik J. 2013. The speciation of organotin compounds in sediment and water samples from the port of Gdynia. Soil & Sediment contamination Vol. 22, pp 614-630.

Schipper CA, Dubbeldam M, Feist SW, Rietjens IMCM, Murk TA. 2008. Cultivation of the heart urchin Echinocardium cordatum and validation of its use in marine toxicity testing for environmental risk assessment. Journal of Experimental Marine Biology and Ecology Vol. 364 (1), pp 11-18

Tolosa I, Merlini L, de Bertand N, Bayona JM, Albaigest J. 1992. Occurrence and Fate of Tributyl- and Triphenyltin. Compounds in Western Mediterranean Coastal Enclosures. Environmental Toxicology and Chemistry Vol. 11, pp 145-155

7. SUPPORTIVE INFORMATION: ECOTOXICITY DATA

Tabell S1. Sediment ecotoxicity studies of TBT. Critical data is marked in bold.

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
riparius	exposure groups; low medium and high, a control		(approx 2.3 % TOC)	and multi (5) generations	(development time, survival,	Lengthened larval development:		Ecologically	2012
Obtained from a mass culture.	medium and high, a control and a solvent with four replicates each (50 test		% TOC) Natural	generations test.	time, survival, fecundity and weight)	development: <u>LOEC = 24 μg/kg [52 at 5 %</u> TOCI	18 °C (ambient	Ecologically relevant study.	
established in 2009.	organisms/ replicate).		sediment (Finnish caolin clay, Kerapo		- immune response	Reduction in larval survival: LOEC = 114 μg/kg [250 at 5 % TOC]		Generally, relevant for Swedish conditions.	
	TBT chloride and placed in aerated aquaria, with 1250 g of sed and 3000 mL water.		Helsinki) and fine sand (Biltema)			Adult bodyweight was reduced by TBT contamination, but no		However, relatively high pH. Temperature relevant for	
	Nominal conc:					under the highest conc, due to lack of data. Adult fecundity		summer condition.	
	30, 90 and 180 μg/kg					concentrations. Hemocyte		different TBT test	
	Measured conc:					TBT, while no significant effect		thus LOEC and	
	24, 117 and 231 μg/kg					was observed for PO activity. In the single generation test TBT affected all tested endpoints compared to control.		NOEC may be under- and overestimated respectively.	
						The effect of continous exposure to TBT over five generations varied between the different TBT treatments, supported by a statistically significant interaction			

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
						between generation time and TBT treatment. The results showed that TBT had both first generation and multigeneration effects on all tested parameters. A five generation exposure lead to extintion in all treatments.			
Monoporeia affinis Natural micro and meiofauna. collected at 3 cm depth in late October 2008 at Björkfjärden in lake Mälaren.	Organisms were exposed to TBT (Tributyltin TBTO (Sigma-Aldrich) during gonad maturation, in microcosms with spiked sediments under static conditions. Each microcosm had a bottom layer of 150 mL sediment with natural composition of micro- and meiofauna from the collection site and 1 L freshwater. The water was aerated throughout the test. The experiment lasted for 5 weeks with the following exposure groups each consisting of seven microcosms (replicates) with 26 adults in each: (A) Control, (B) 70 g TBT/kg sediment dw and (C) 170 g TBT/kg sediment dw. In total there were 21 replicates and 546 animals. Nominal concentrations: Control: 0 ng TBT/g dw	Limnic	LOI 7.6 ± 0.02 % (approx 4.4 % TOC) Natural sediments. Sediment compositio n at 3 cm depth (in Björkfjärde n in lake Mälaren) was detemined to 0.8 % sand, 31 % silt and 68 % clay.	35 d	Survival Reproduction Dead oocytes in female gonads Parasites (numbers of infected organisms)	Survival NOEC: 170 μg TBT/kg dw Female sexual maturation NOEC: 170 μg TBT/kg dw Male sexual maturation Borderline statistical significant increase in the proportion of sexually mature males Dead oocytes in female gonads LOEC: 170 μg TBT/kg dw Parasites (numbers of infected organisms) LOEC: 170 μg TBT/kg dw [all correspond to 190 at 5 % TOC] No effect of TBT exposure on survival or female sexual maturation. Unclear reagarding male sexual maturation. Frequency of	5 ± 0.5 °C	Klimish score: 2 Ecologically relevant study. Relevant for Swedish conditions. pH not reported. The study was carried out at a low temperature (5 °C). Only three TBT test concentrations, thus LOEC and NOEC may be under- and overestimated respectively. Some of the results are a bit ambiguous, and the statistical significance unclear. Relatively high level of organic content, which	Jacobson et al 2011

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
	Low: 100 ng TBT/g dw High: 250 ng TBT/g dw					dead oocytes increased significantly at TBT high conc. Significantly more parasite		may lead to high effect concentrations.	
	Measured concentrations Control: 13 ng TBT/g dw Low: 70 ng TBT/g dw High: 170 ng TBT/g dw					infected females in TBT high.			
Echinocardium cordatum (both field and laboratory cultured organisms)	Control sediment was spiked with tributyltin (TBT) according to the method described by Bowmer (1993). In the 14 d whole sediment toxicity bioassay mortality was tested in a 750cm2 aquarium with a 10 cm layer of sediment and covered with 10 cm of filtered seawater with a salinity 32±4 g l–1. All tests with four replicates per treatment, each containing 10 organisms. Nominal concentrations: 0, 425, 852, 1705, 5253, 8542 and 17047 µg Sn/kg dry weight Measured concentrations (after 14 days exposure) Range from 9.6 to 16,646 µg Sn/kg dry weight (82 to 98 % of the nominal concentrations). Individual	Marine	OC not reported Control sediment from Eastern Scheldt. Sediments from the port of Rotterdam, control sediments from clean site in Oesterput. Type of sediments not reported.	14 d	Survival (non- reburial activity)	Field E. Cordatum: LC50 = 702 ng Sn/g dw> 1685 µg TBT/kg dw Cultured E. Cordatum: LC50 = 1525 ng Sn/g dw> 3660 µg TBT/kg dw The results show that TBT is moderately toxic to the test organisms. It was also concluded that cultured heart urchins are less sensitive to TBT than field collected E. cordatum. In whole sediment toxicity tests, survival of cultured sea urchins was higher or at least similar to that of field collected E. cordatum. Note: the set of the test of test o	15 ± 2 °C	Klimish score: 2 Generally, ecologically relevant study. However, only tested for mortality. Relevance to Swedish conditions could not be assessed. Several physico-chemical parameters are not reported, however there are references to older studies.	Schipper et al 2008

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
	concentrations are not reported.								
Hyalella azteca Hexagenia limbata (mayfly larva) Physella gyrina (pulmonate gastrophod) Tubifex tubifex (oligochaete) Chironomus riparius (midge larva) Daphnia magna (cladoceran) Freshwater invertebrates. The selection of species encompasses a range of life cycles, feeding habits and burrowing behaviours, all of which may modify toxicity.	The sediment was spiked with TBT chloride (Alfa Aesar) to a nominal conc of 5000 ng Sn/g, dilutions were prepared by adding control sediment. The experiments were conducted in 40 l glass aquaria containing a 9:1 ratio of overlying water to sediment. All species were exposed simultaneously in each aquarium. There were 12 aquaria in total; 3 replicates/ concentration. Nominal concentrations: 0 ng Sn/g = ng TBT/g 50 ng Sn/g = ng TBT/g 500 ng Sn/g = ng TBT/g 5000 ng Sn/g = ng TBT/g 5000 ng Sn/g = ng TBT/g 5000 ng Sn/g = ng TBT/g The nominal concentration range was based on the results of previously conducted chronic toxicity tests with H. azteca, where no effects occured at 50 ng Sn/g and almost complete mortality occured at 5000 ng Sn/g.	Limnic	2 % TOC Sediments from Lake Erie (Canada), composed of 14 % sand, 49 % silt, 37 % clay and 2 % total organic carbon. Top 10 cm used in test. Density = 1.28 mg/L, moisture content = 54.2 %"	16 weeks	Growth, survival	 H limbata: No effect on survival at low or intermediate conc, complete mortality at the highest conc. LOEC/LC100 = 1900 ng Sn/g> 4560 μg TBT/kg dw [11 000 at 5 % TOC] P. gyrina: No effect on the number of adult organisms at low or intermediate conc, significant drop in survival at the highest conc. (to 64 % of control values) Growth was not affected. LOEC = 1900 ng Sn/g> 4560 μg TBT/kg dw [11 000 at 5 % TOC] H. azteca: No statistically significant effect. T tubifex: No effect at low or intermediate conc, complete mortality at the highest conc. LOEC/LC100 = 1900 ng Sn/g> 4560 μg TBT/kg dw [11 000 at 5 % TOC] C. riparius: The toxicity of TBT could not be reliably quantified. No negative effects with increasing levels of TBT were detected, but survival was vey low in control aquaria (<15 %). D magna: No effect at low or intermediate conc, complete 	Mean pH was 8.3, range was 7.9 to 8.6. 25 ± 1 °C	Klimish score: 2 High temperature and pH, otherwise suitable for Swedish conditions. Several different species, but since only three TBT conc. are tested, differences between the species is not easily detected in the test.	Bartlett et al 2007

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
	below LOD 28,6 ng Sn/g = ng TBT/g 258 ng Sn/g = ng TBT/g 1900 ng Sn/g = ng TBT/g					mortality at the highest conc. LOEC/LC100 = 1900 ng Sn/g > 4560 µg TBT/kg dw [11 000 at 5 % TOC] The toxicity of TBT was similar in four out of six species of freshwater invertebrates. Statistically significant toxic effects were observed only at the highest TBT conc in H. limbata, P. gyrina, T. tubifex and D. magna, and there were no detectable effects on sublethal endpoints (i.e. growth, reproduction) in any of the test species at levels below those at which survival was affected.			
Hyalella azteca Cultured organisms, ref to Borgmann et al 1989. Young organisms (0-1 week old) were used for the toxicity test.	Experiments were conducted in 250 mL glass beakers containing 180 mL water and 20 mL sediment. Reference to Bartlett et al 2004b for information on conditions etc. Three replicates per sediment sample for each type of test. Test beakers were aerated through the experiments. Max conc in harbour sediments: Kingston: > 4000 ng Sn/g Montreal: > 800 mg Sn/g Port Weller: 520 ng Sn/g	Limnic	2 % TOC (in control sediments, harbour sediments not reported) Sediments from Canadian freshwater harbours historically contaminat ed with TBT; Montreal, Kingston, Toronto,	4 weeks	Growth, survival	No observable effect of TBT on survival or growth; NOEC Kingston = > 4000 ng Sn/g = > $9600 \ \mu g \ TBT/kg \ dw \ [24000 at 5 % TCO]$ NOEC MOEC Montreal = > 800 mg Sn/g = > <u>1920 \ \mu g \ TBT/kg \ dw \ [4800 at 5 % TOC]</u> NOEC Port Veller = 520 ng Sn/g = <u>1248 \ \mu g \ TBT/kg \ dw \ [3100 at 5 % TOC]</u> NOEC Toronto = 310 ng Sn/g = <u>744 \ \mu g \ TBT/kg \ dw \ [1900 at 5 % TOC]</u>	pH range was 7.9 to 8.6. 25 ± 1 °C	Klimish score: 2 High temperature and pH, otherwise suitable for Swedish conditions. High NOEC values, indicating that H azteca is not very sensitive (re growth/survival), which is supported by the results in Bartlett et al 2004, see below.	Bartlett et al 2005

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw) ²	Physico- chemical conditions	Validity/relevance	Reference
	Toronto: 310 ng Sn/g Hamilton: < 100 ng Sn/g		Hamilton and Port Weller. Control sediments from Lake Erie, composed of 14 % sand, 49 % silt, 37 % clay and 2 % total organic carbon. Sediment type for the harbours not reported			NOEC Hamilton = 100 ng Sn/g = 240 µg TBT/kg dw [600 at 5 % TOC] (Results for spiked sediment is reported in Bartlett et al 2004, see below). In conclusion, TBT in Canadian freshwater harbours does not appear to be a major environmental concern. TBT in field sediments was less bioavailable than in laboratory spiked sediments.			
Hyalella azteca Cultured freshwater amphipod invertebrates. Zero to one week old at the beginning of each experiment.	The chronic toxicity of TBT chloride (Alfa Aesar) was examined by exposing two successive generations of the freshwater amphipod Hyalella azteca to sediments spiked with TBT. Sediments were spiked to a nominal concentration of 9000 ng Sn/g DW, from which a series of TBT-spiked sediments ranging from nominal conc of 90 to 5000 ng Sn/g DW were made. The range of test concentrations was based on preliminary experiments that showed no effect on survival at nominal sediment conc of 90 re Sn/g.	Limnic	TOC 2 % Sediments from Lake Erie (Canada), composed of 12 % sand, 49 % silt, 37 % clay and 2 % total organic carbon.	28 d 70 d	Survival, biomass production, reproduction	Survival: 4-week LC25 = 951 ng Sn/g dw = 2282 µg TBT/kg dw [5700 at <u>5 % TOC</u>] 4-week LC50 = 1460 ng Sn/g dw = <u>3504 µg TBT/kg dw [8800</u> <u>at 5 % TOC</u>] 10-week LC25 = 533 ng Sn/g dw = <u>1279 µg TBT/kg dw [3200</u> <u>at 5 % TOC</u>] 10-week LC50 = 933 ng Sn/g dw = <u>2239 µg TBT/kg dw [5600</u> <u>at 5 % TOC</u>] Biomass production:	25±1°С рН 8.37	Klimish score: 2 High temperature and pH, otherwise suitable for Swedish conditions. Reproduction is the most sensitive endpoint. EC25 reported.	Bartlett et al 2004

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
	and almost complete mortality at 5000 ng Sn/g. Sediment toxicity experiments were conducted in 250-ml glass beakers containing 180 ml of water and 20 ml of sediment. To initiate each experiment, 20 zero- to one- week-old animals were added to each beaker.					4-week EC25 = 1040 ng Sn/g dw = <u>2496 μg TBT/kg dw [6300</u> <u>at 5 % TOC]</u> 4-week EC50 = 1480 ng Sn/g dw = <u>3552 μg TBT/kg dw [8900</u> <u>at 5 % TOC]</u> 10-week EC25 = 1010 ng Sn/g dw <u>= 2424 μg TBT/kg dw [6100</u> <u>at 5 % TOC]</u> 10-week EC50 = 1300 ng Sn/g dw = <u>3120 μg TBT/kg dw [7800</u> <u>at 5 % TOC]</u>			
	The experiments were conducted twice with two replicates per concentration per experiment. Nominal concentrations: 90, 160, 280, 500, 900, 1600, 2800, 5000, and 9000 ng Sn/g dw					Reproduction: 10-week EC50 = 238 ng Sn/g dw = <u>571 µg TBT/kg dw [1400</u> <u>at 5 % TOC]</u> No living young were produced between weeks 8 and 10 at nominal concentrations of 900, 5000, and 9000 ng Sn/g dw			
	Tributyltin levels measured in spiked sediment samples were approximately 50 % of nominal for all concentrations, except the highest, which was only 38 % of nominal								

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw) ²	Physico- chemical conditions	Validity/relevance	Reference
Potamopyrgus antipodarum (freshwater mudsnail). Specimens from laboratory breeding stock	Artificial sediments were spiked with seven nominal concentrations. Static test system (no water renewal) in 1-L glass flasks. Aerated sediments.80Potamopyrgus were added to each flask.A control and a solvent control was included in the test.NominalTBT concentrations:5, 10, 25, 50, 125, 250 and 500 µg Sn/kg dw(1 µg Sn corresponds to 2.44 µg TBT)MeasuredTBT concentrations (after eight weeks):14.9, 20.1, 13.8, 70.6, 95.4, 152 and 396 µg Sn/kg dw	Limnic	TOC 2.3 % Spiked artifical sediments. 95 % quarts, 5 % grinded beech leves (for optimal embryo production)	2, 4 and 8 weeks	Embryo production	Embryos without shell 4 weeks: EC10 = 0.98 μ g Sn/kg = 2.4 μ g TBT/kg [5.2 at 5 % TOC] EC50 = 45.8 μ g Sn/kg = 110 μ g TBT/kg [240 at 5 % TOC] Eight weeks: EC10 = 2.98 μ g Sn/kg = 7.2 μ g TBT/kg [16 at 5 % TOC] EC50 = 64 μ g Sn/kg = 154 μ g TBT/kg [330 at 5 % TOC] Total embryos 4 weeks: EC10 = 10.6 μ g Sn/kg = 25.4 μ g TBT/kg [55 at 5 % TOC] EC50 = 173 μ g Sn/kg = 415 μ g TBT/kg [900 at 5 % TOC] Eight weeks: EC10 = 3.5 μ g Sn/kg = 8.4 μ g TBT/kg [18 at 5 % TOC] EC50 = 93.9 μ g Sn/kg = 225 μ g TBT/kg [490 at 5 % TOC] EC50 = 93.9 μ g Sn/kg = 225 μ g TBT/kg [490 at 5 % TOC] EC50 (4 weeks) = 542 μ g Sn/kg = 1301 μ g TBT/kg [2800 at 5 % TOC] LC50 (8 weeks) = 431 μ g Sn/kg = 1034 μ g TBT/kg [2200 at 5 % TOC]	15±1 °C	Klimish score: 2 Relevant for Swedish conditions in terms of organic carbon, temperature and test species. However, pH not reported and artificial sediments. Low calculated effect concentrations. EC10 reported.	Duft et al 2003
						$= 24 \mu g \text{TBT/kg} [52 \text{at} 5\% \text{TOC}]$			

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
						The number of unshelled embryos (the most sensitive parameter) decreased continously and significantly in all tested TBT conc and reached zero at the highest conc. EC10 for the eight week study was slightly higher than for the four week study which was unexpected.			
Armandia brevis A deposit- feeding Opheliid polychaete. Collected from sediments at Mitchell Bay, WA, USA, with no detected levels of TBT.	Sediments were spiked with a concentrated solution of TBT in acetone (100 mL sediment and 900 mL seawater in glass jars). Nine TBT treatments + controls. Sediments were analyzed on days 0, 21 and 42 to determine conc and check for loss of TBT. Range of measured sediment concentrations: 7 - 2556 ng TBT/g dw (mean of measures at day 21 and day 42)	Marine	0.6 % TOC Sediment from Mitchell Bay	21 d 42 d	Growth, survival	Growth: <u>EC10 = 34 μg TBT/kg dw [280</u> <u>at 5 % TOC]</u> <u>EC25 = 93 μg TBT/kg dw [770</u> <u>at 5 % TOC]</u> <u>EC50 = 224 μg TBT/kg dw</u> <u>[1900 at 5 % TOC]</u> Survival: <u>LC50 = 902 μg TBT/kg dw</u> <u>[7500 at 5 % TOC]</u> These results demonstrate that contaminant-induced sub lethal responses such as growth are more sensitive than mortality, and that juveniles appear to be more sensitive than adults. The sediment concentration (93 ng/n) causing a 25 % red(ution	13±1°С рН 8	Klimish score: 2 Very low organic carbon content, which indictes that the results may be conservative. EC10 reported.	Meador & Rice 2001

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
						in growth (EC25) for A. brevis is commonly exceeded in urban sediments. When normalized to organic carbon content, the day 42 LC50sedoc was 1.58E-5 ng TBT/g organic carbon in these exposures with juvenile A. brevis. The LC50sedoc can be used to determine the LC50sed for other sediments with differing amounts of organic carbon. For example, the LC50sed for a 1.5 % TOC sediment is predicted to be 2550 ng/g dry sediment.			
Echinocardium cordatum Corophium volutator Deposit feeders, limited knowledge on pathways of exposure. E cordatum: Adults of 3 - 6 cm, taken from an off-shore location in the north sea. C volutator: Adults collected from intertidal flat in the eastern Scheldt estuary.	Sediment samples were spiked by adding TBT chloride (Aldrich) to wet sediments. Toxicity test for E. cordatum were performed according to the Oslo and Paris Commission ring-test guideline. Flowing uncontaminated seawater. Each spiked sediment were tested in triplicate for mortality. 6 - 10 individuals per test. Tests for C. volutator were performed according to European Community Guidelines. Spiked sediments in 1-L glass jars,	Marine	TOC 2 % Silty (fine) marine sediments, collected in the Rhine estuary. The spiked sediments were allowed to stand for 47 days to enable the TBT to reach equilibrium	E cordatum: 28 d C. volutator: 10 d	Survival	E cordatum 14 d: <u>NOEC</u> = 1144 ng Sn/g dw = <u>2746 µg TBT/kg dw [6900 at 5</u> <u>% TOC]</u> <u>LC50</u> = 4055 ng Sn/g dw = <u>9732 µg TBT/kg dw [24000 at 5</u> <u>% TOC]</u> E cordatum 28 d: <u>NOEC</u> = 1144 ng Sn/g dw = <u>2746 µg TBT/kg dw [6900 at 5</u> <u>% TOC]</u> <u>LC50</u> = 1594 ng Sn/g dw = <u>3826 µg TBT/kg dw [9600 at 5</u> <u>% TOC]</u> C volutator 10 d:	E cordatum: 14 - 15.4 °C C. volutator: 14.8 - 15.8 °C pH: E cordatum: 7.5 - 8.1 C volutator: 8.1 - 8.3 pH sed: 7.7	Klimish score: 2 Relevant for Swedish conditions. The differences between NOEC and LC50 are rather small.	Stronkhorst et al 1999

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
	filtered seawater added, then aerated for 24 hours. Each test concentration was tested in duplicate with 20 individuals per test. Concentration in sediment befor spiking: 17 ng Sn/g dw Nominal concentrations: 0, 32, 100, 320, 1000, 3200 and 10000 ng Sn/g dw Measured concentrations (after 28 days): 20, 24, 46, 179, 1144, 2383 and 11256 ng Sn/g dw					NOEC = 1144 ng Sn/g dw = 2746 µg TBT/kg dw [6900 at 5 % TOC] LC50 = 2185 ng Sn/g dw = 5244 µg TBT/kg dw [13000 at 5 % TOC] The bioavailability of TBT in the silty marine sediment is strongly reduced by sorption to organic matter and probably also to the large fraction of minerals present.			
Meiobenthic communities	Microcosms consisted of 570 mL glass bottles. Experimental sediment was amended with TBT chloride to achieve low, medium and high dose levels in experimental treatments. Spiked sediment was mixed in to the microcosms to achieve target TBT conc. There were four replicate microcosms for each TBT contaminated treatment and eight uncontaminated	Marine	OC not reported. Three locations in SW England: Lyncher estuary (muddy sed) Exe estuary (sandy sed) Rame Head, Plymouth (muddy sand)	2 months	Number of species, abundance of nematode communities.	Lynher: Meiofauna (identified species/number of individuals) affected at the medium dose only. Exe: Significant effects at all three TBT conc (not measured, target conc was 0.3, 0.6, and 0.9 µg Sn/g dw = 0.7, 1.4 and 2.2 µg TBT/g dw). Rame Head:	20 °C	Klimish score: 2 Ecologically relevant study. Relevance for Swedish conditions could not be assessed since not all physico-chemical parameters are reported. Temperature relevant for summer conditions.	Austen & McEvoy 1997

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw) ²	Physico- chemical conditions	Validity/relevance	Reference
Organism	Method controls which were randomly located spatially within crates. Multivariate data analysis was done using non-metric multidimensional scaling ordination (MDS) with the Bray- Curtis similarity measure and using a range of transformations. Untransformed data analysis is more sensitive to changes in dominant species but increasingly severe square root and double square root transformations are more sensitive to changes in species composition. Hence analysis using different transformations provides an indication of which components of the community are being affected by the treatment, e.g. dominant and abundant species; common, slightly lower abundance species; and rare species. Target values:	/ Marine	sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw) ² Significant effect at the highest dose. Effects were observed throughout the community (i.e. at all levels of data transformation) only at the highest TBT dose levels in the Exe estuary and Rame Head samples and (peculiarly) in the medium dose levels in the Lynher estuary. The Exe estuary fauna was also significantly affected by TBT at low and medium dose levels (when the data were transformed) and was therefore the most sensitive of the tested communities. Even though the treatment effects of some of the different dose levels were significant, the meiofaunal response was not one of large changes in community structure or gross mortality. There were almost no significant differences between treatments and controls in the univariate measures of nematode community structure. Mean numbers of species per microcosm averaged across all treatments were 22, 20 and 33 for Lynher, Exe and Rame	chemical conditions	Validity/relevance	Reference
	dw.					and the corresponding mean			

Organism	Method	Limnic / Marine	Organic carbon ¹ ; sediment type	Duration	Endpoint/s	Effect conc (µg TBT/kg dw)²	Physico- chemical conditions	Validity/relevance	Reference
	Maggurad values					abundances were 3870, 910 and 590, respectively.			
	lyncher estuary:								
	0.04, 0.27, 0.48 and 0.95 μg Sn/g dw.								
	Rame Head:								
	0.01, 0.19, 0.53 and 0.92 μg Sn/g dw.								
	Samples from Exe estuary were destroyed during storage before metal analysis could be carried out.								

¹ If only the "loss-on-ignition" (LOI) was stated in the publication, TOC was estimated by division with 1.724 (see "Undersökningstyp Sediment – basundersökning". <u>https://www.havochvatten.se/download/18.64f5b3211343cffddb28000812/1348912814052/Sediment+-+basunders%C3%B6kning.pdf</u>

² If results were expressed on the basis of the tin (Sn) content, it was converted to TBT content (by multiplication by 2.4). Values within parentheses is normalized to 5% OC (if possible) this was done by multiplying the effect value with 5 and then divided by actual TOC content.

8. SUPPORTIVE INFORMATION: Koc VALUES

Tabell S2. Koc values for TBT. Koc intervals used in calculations, based on the reliability and relevance for Swedish environmental conditions, are given in bold.

Method	Environment	TBT conc (water)	TBT conc	Physico-	Koc and Kd	Conclusion in article	Validity/	Reference
			(sediment)	chemical			Relevance	
				conditions				
The partition	19 sampling sites	Enclosed vessel	Max: 9260 ng/g	pH?	Koc?	The partion coefficients	Klimisch 3	Tolosa et al 1992
coefficients were	along the northeast	anchorages: 74 -		Seawater		were one order of		
determined as conc	mediterranean	369 ng/l		TOC?	K'd values are	magnitude higer for	The aim of the	
ratios between	Spanish Coast(1988)	Commercial and			reported in a plot;	triphenyltins than for	study was not to	
sediment (K'd) or		fishing harbors: 14 -			the range is	butyltins.	focus on partition	
particulate (Kd) phase		30 ng/l			between ca 500 -		coefficents. Too	
and dissolved phase of					100000.	K'd for TBT is increasing	little information	
seawater. Koc was							to make an	

Method	Environment	TBT conc (water)	TBT conc	Physico-	Koc and Kd	Conclusion in article	Validity/	Reference
			(sediment)	chemical conditions			Relevance	
obtained by normalizing K'd for the organic carbon content in sediment.						with increased sediment concentrations.	assment of the relevance to Swedish conditions.	
Factorial experiments to investigate the effect of pH, particulate matter and salinity. For the estuarine experiments, 12 factorial experiments were undertaken in duplicate along with experimental blanks. Batch isoterm experiments to study the importance of concentration of particulate matter and sediment type in TBT sorption.	Sampling sites in the UK (sediment and water); Trowse Mill (sandy- silt) Rockland (silty-sand) Cantley (silty clay) (River Yare, Norfolk, UK) Water used in factorial experiments (uncontaminated with organotin compunds); Snape Quay (freswater) Orford Haven (saline) (Suffolk, UK)	TBT added to uncontaminated water and aqueous concentrations of TBT were calculated. TBT sorption isoterm data for freshwater sediments (μg/l): Cantley: 0.016 - 0.209 Rockland: 0.029 - 0.251 Trowse: 0.046 - 0.313	Sorbed sediment concentrations were found by difference relative to available TBT. TBT sorption isoterm data for freshwater sediments (µg): Cantley: 0.511- 0.704 Rockland: 0.469 - 0.691 Trowse: 0.405 - 0.674	Trowse Mill: 1.4 % TOC; pH 7.6 Rockland: 12.5 % TOC; pH 7.2 Cantley: 6.9 % TOC; pH 7.8 TOC in sediment and interstitial water: 0.9 - 9.8 % (10 sites, mainly marinas and boatyards) Snape Quay: pH 7.95 Orford Haven: pH 7.93 Estuarine water experiments: pH 6 – 8 Water from Orford Haven was diluted to give salinity values of 5, 17.5 and 35 ppt.	Koc? TBT sorption isoterm data for freshwater sediments (Kp): Cantley: 1464 - 4973 Rockland: 960 - 2493 Trowse: 398 - 896 Kp in sediment and interstitial water: 1.48E3 - 5.55E4 (10 sites, mainly marinas and boatyards)	TBT adsorption varied with sediment type, increasing in the order sandy silt < silty sand < silty clay. The TBT partition coefficient in interstial waters appears to be related to total organic carbon loadings.	Klimisch 2 No replicates. Batch isotherm experiments. Good distribution of TOC, values, overlaping the Swedish measured values.	Dowson et al 1993
Batch testing methods using ¹⁴ C-TBT and natural sediment/water systems.	UK: Tamar Estuary Avon Estuary (for pH dependency) Poole Harbour	the concentration of TBT in water covered a range of 6-6000 ng/l (as TBT)	Summary statistics, mean values (µg/g as Sn): Poole 1985 -88: 0.16	16 TOC values reported from different sites ranging from 1.32-11.7 %	Koc (Kd normalised with respect to the content of organic matter of	Partitioning is influenced by salinity (lowest Kd values at low to intermediate salinities) and pH (highest Kd	Klimisch 2 Batch experiments, 2 – 5 replicates. Repeated sampling of selected	Langston & Pope 1995

Method	Environment	TBT conc (water)	TBT conc (sediment)	Physico- chemical	Koc and Kd	Conclusion in article	Validity/ Relevance	Reference
For the K d determinations, two to five replicate treatments were used for each sediment. In the present study, the influence has been determined of some of the major parameters which affect the association of TBT with particulate material and its subsequent release, namely salinity, pH, suspended solids and sediment composition.	Several other estuarine and coastal locations were used for the comparisons between sediment types.	Summary statistics, mean values (ng/l as Sn): Poole 1985 -1988: 44.4 (n=24) Poole 1988-1990: 16.5 (n=29) Poole 1990-1992: 6.9 (n=39) Tamar 1991: 1.7 (n=0)	Poole 1988-90: 0.14 Poole 1990-92: 0.1 Tamar 1991: 0.023	Salinity ranging from freshwater to full strength seawater (four replicates at each salinity) pH 4-10	sediments): 16 values reported from different sites ranging from 188 to 2814 16 Kd values reported from different sites, ranging from 248 to 24677 (each value reported is the calculated mean of four replicates) Summary statistics, based on mean values: Poole 1985 -88: 5170 Poole 1985-90: 10992 Poole 1990-92: 32969 Tamar 1991: 20798	values occuring at neutral pH). Sediment characteristics also influenced partitioning; Kd were positively correlated with the concentration of total organic matter, humic substances, and high content of silt. The proportion of TBT bound 28 oparticles declined as the level of contamination increased.	sampling sites (Poole/Tamar). Based on available Swedish values what values for TOC, the most relevant Kd vales are 5102 and 8166. However, several other parameters are also important when assessing relevance.	
Sorption-desorption batch experiments using contaminated freshwater harbour sediments and two certified OT containing marine sediments. The sediment-water distribution ratios determined in the laboratory were compared with <i>in situ</i> distribution ratios calculated from solid	Lake Zurich; Switzerland Harbor Wädenswil (sample ID W2) and Harbor Enge (E2). Non natural "marine sediments"; PACS-1 and PACS-2 (two certified OT containing sediments).	In situ experiments (calculated average values from 13 vertical layers): W2 = 17 ng/l E2 = 9.8 ng/l	In Situ experiments (average observed values from 13 vertical layers) W2 = 350 ng/g E2 = 240 ng/g	No listed TOC values. Particulate organic carbon (POC) is listed for sediment and dissolved organic matter (DOC) for porewater. Porewater pH W2=7 E2=7.2	Laboratory experiment W2 - log Doc = 5.37 PACS-1 - log Doc = 5.46 PACS-2 - log Doc = 5.11 In situ experiments (calculated average values) W2 - log Doc =	At ambient pH values the sorption of triorganotins to sediments were dominated by complex formations of the positively charged OT species with oxygen ligands present in the POM.	Klimisch 2 Duplicates of laboratory deteminition of Kd. High TBT-levels in sediments, TOC not listed.	Berg et al 2001

Method	Environment	TBT conc (water)	TBT conc (sediment)	Physico- chemical	Koc and Kd	Conclusion in article	Validity/ Relevance	Reference
			(,	conditions				
pore water concentration depth profiles				Lake water	5.69 E2 - log Doc = 5.73			
					Laboratory experiment W2 - log Kd = 4.13 PACS-1 - log Kd = 4.03 PACS-2 - log Kd =3.61 In Situ experiments (average observed values) W2 - log Kd = 4.34 E2 - log Kd = 4.39 (Kd = 21878 and 24547)			
Batch systems of 50 ml water phase and 1 g dried sediment in Erlenmeyer flasks were used. Sorption constants were calculated by regression analysis of isotherm equations. Experiments were conducted both in the field and in the laboratory.	Sediment samples from the vicinity (sea, esuary, river) of Haihe River, Tianjin, China S-1: Sea S-2: Estuary S-3: River Ambient natural water.	Ambient water: S-1: 62.9 ng Sn/L S-2: no data S-3: no data	S-1: 95.8 ng Sn/g S-2: no data S-3: no data	TOC S-1: 2.1 % S-2: 4.3 % S-3: 4.5 % Sediment pHs: 6.6 - 7.6 To dtermine the influence of pH on sorption, pH from 3 - 10 were maintained in the batch system. Salinity S-1: 30.8 ‰ S-2: 22.6 ‰ S-3: 3 ‰	Koc? Kd(L/kg) under natural aqueous conditions: S-1: 576,5 S-2: 2137,3 S-3: 3837,5 When water- phase salinity was elevated, sorption of TBT on S-2 and S-3 decreased greatly.	Kd values were pH dependent, with the highest sorption occurring under mildly acidic (pH 6) conditions. A second sorption peak was observed above pH 10. Further, sorption of TBT decreased as salinity increased.	Klimisch 2+ Thourough description of the method, but no replicates. Relevant for Swedish conditions. Limitid data on TBT concentrations in sediment and water.	Dai et al 2003
TBT sorption to natural sediments in artificial	Sediment samples (0 - 10 cm) from four	Initial aqueous concentraions:	Determined by the difference	TOC in sediments:	Koc?	TBT sorption/desorption in natural sediments in	Klimisch 2	Burton et al 2004

Method	Environment	TBT conc (water)	TBT conc	Physico-	Koc and Kd	Conclusion in article	Validity/	Reference
			(sediment)	chemical			Relevance	
seawater Sorption	different locations	Bange of 50 - 500	between initial and	MM· 4.8 %	Kd was	artificial seawater can be	No replicates	
isoterm equation	within the Moreton	$\mu g/l$ (7 samples)	equilibrium	FS: 2.6 %	determined for	strongly influenced by	(except for some	
calculations	Bay, Southeast	PB/ (/ samples)	aqueous TBT	CS: 0,3 %	the four sediment	changes in pH and	experiments with	
	Queensland,		concentrations.	SP: 2,2 %	samples under	salinity. The observed	the SP sample).	
	Australia, designated				various artifical	behaviour can be	High TBT-levels in	
	MM, FS, CS and SP.			pH in	seawater salinity	rationalized by	the artificial	
				sediments: MM:	and pH	considering the	seawater.	
	Samples MM			7,5	condidtions. In	contrasting sorptive		
	(mangrove forest), FS			FS: 7,5	general TBT	behavior of the neutral		
	(mud flat) and CS			CS: 8	sorption to the	(TBTOH, TBTCI) and		
	(sand bank, low tide)			SP: 7,5	four contrasting	cationic (TBT+) species at		
	were expected to be			Destauths	sediment samples	given pH/salinity		
	relatively pristine			During the	followed the	conditions.		
	collected from a			ovporimonts	MM: 172 - 5210			
	commercial marina			solution nH was	l/kg			
				maintained at 4.	FS: 66-1220 l/kg			
	Artificial seawater			6 and 8.	SP: 21-65 l/kg			
	was used.				CS: 6.1-24.7 l/kg			
				Salinity 5 and 30				
				psu	The Kd values			
					follow the order			
					of organic C			
					content in the			
		100, 1000,	Not a sectificat	The selected	sediment samples.	The shade estate to the	Klimitada 2	Hards O. Calandaria
A batch technique was	Two types of day	100–1000 ng	Not specified	The minerais	KOC?	ine study points to the	KIIMISCN Z	Hoch & Schwesig
dotormino tho	minorals wore used:	(50)/10		with sorbod	Kd (1/kg):	and characterizing	adsorption studios	2004
nartitioning of TBT	Wyoming Na-			organic matter:	Ku (1/ kg). KGa: 51	sorbents and	Testing	
between the solid and	montmorillonite			end C-content	SW/v: 89	envrionmental	corresponding to	
water phase (see Hoch	(sample SWy) and			of minerals as	Oz: 25	conditions in order to	Tier 1 in OECD 106.	
et al. (2002))	crystallized kaolinite			follows:		predict and model TBT	Replicates during	
	(sample KGa)			KGa: 0,02 %	Kd′ (l/m²):	distribution in natural	the enrichment	
Based on the linear	and quartz sand			Swy: 0,28 %	KGa: 5.07E-03	systems. The results	with sorbed	
adsorption isotherms	(sample Qz)			Qz: 0,1 %	SWy: 2.79E-03	demonstrate that	organic matter.	
of TBT to different					Qz: 8.04E-02	numerous		
types of minerals at pH	No natural sediments			Sediment pH:		environmental	Very low TOC	
6, adsorption	were used.			4–9		parameters influence the	levels. No values of	
coefficients (Kd) were						adsorption process of	TBT concentrations	
calculated.				Salinity 0 ‰		IBI. Examples of such	in sediement	
				(deionised		parameters are	reported.	

	Reference
(sediment) chemical Relevance	
conditions conditions	
water) or 32 ‰ solid/solution ratio, clay The study was	
(artifical content, pH and salinity. conducted in order	
seawater) The strongest adsorption to inverstigate the	
was found at high result when	
particle concentrations changing certain	
(40–100 g/l), a large parameters, and	
proportion of clay and a does not reflect	
low salinity (0%). The actual	
maximum of adsorption environmental	
was always noted at a pH conditions.	
between 6 and 7.	
However, the strongest	
effect on TBT adsorption	
was found when	
introducing organic	
matter, either as	
particulate organic	
matter or as adsorbed	
organic matter, into the	
reaction system. TBT was	
found to adsorb more	
strongly to organic	
matter than to mineral	
phases. Addition of 5 %	
POM to the KGa sample	
showed a linear increase	
of Kd from 51 up to 2700	
I/kg. (The results are in	
significant contrast to	
Unger et al (1988), who	
did not find any	
correlation between the	
sorption coefficient of	
TBT and the amount of	
<i>TOC (0.3–19.8 % TOC) in</i>	
the sediment phase.)	
TBT in porewater Triplicate sediment 0.05 - 2.35 μg/l Total TBT Organic carbon: logD _{oc} = range Values for the Butyltin Klimisch 2 No But	Burton et al 2005
samples and sediment cores were colected concentrations 0.8–1.7 % from 3.88 to 5.61 Degradation Index (BDI) replicates. Testing	
extracts were from a commercial ranged from 220 (3.3 % at 0–2 were larger than 1 at corresponding to	
$\mu g/kg - 8/50 \mu g/kg$ cm depth) log Kd, obs values depths greater than 10 Tier 1 in OECD 106.	

Method	Environment	TBT conc (water)	TBT conc (sediment)	Physico- chemical conditions	Koc and Kd	Conclusion in article	Validity/ Relevance	Reference
spectrometry (GC– MS)	Queensland, Australia			SedimentpH: 7.6–8.1 Added water: 5 Deionised water was used.	to 3.69 KD, Obs [l/kg] is an observed distribution coefficient describing the relationship between sorbed (mg/kg) and pore- water (mg/l) concentrations.	sediment/water column interface. This indicates that substantial TBT degradation has occurred in the sediments, and suggests that natural attenuation may be a viable sediment remediation strategy.	Low TOC concentrations, high levels of TBT in sediments makes the study less relevant with regard to Swedish conditions.	
The effect of contact time (1 and 84 days) on TBT desorption from sediment was examined by performing five sequential desorption steps. This involved shaking sediment with artificial seawater, followed by centrifugation and retention of the supernatant. This procedure was repeated five times to simulate TBT desorption during repeated sediment resuspension events.	Three natural sediment samples (designated MM, FS and CS) were collected from the 0 - 5 cm depth interval at a low tide in Moreton Bay, Southeast Queensland, Australia.	Pore-water TBT (μg/l). 1 - 84 days, 7 samples. Sample CS: 15500 - 21400 Sample FS: 34 - 92.8 Sample MM: 11.3 - 21.4 The pore-water TBT concentrations observed in CS did not vary systematically as a function of contact time, but for samples FS and MM the porewater TBT concentrations for contact times of 1 day were greater than those for 84 days.	Sorbed TBT (µg/kg). 1 - 84 days, 7 samples. Sample CS: 3705 - 5244 Sample FS: 9964 - 9986 Sample MM: 9978 - 9988 Sorbed TBT was calculated by subtracting pore- water TBT from added TBT.	Sed (org C): CS: 0,2 % FS: 2,6 % MM: 4,8 % PH CS: 8 FS: 7,5 MM: 7,5 Artifical seawater, prepared according to Eckber gand Hill, no salinity reported in the article.	Koc? Kd, apparant (I/kg) Sample CS 0.18 - 0.34 Sample FS 107 - 286 Sample MM 466 – 687 <i>An apparant</i> <i>distribution</i> <i>coefficient is equal</i> <i>to the partition</i> <i>coefficient *</i> <i>fraction of the</i> <i>substance that is</i> <i>not ionised.</i>	Whilst short-term laboratory-based studies provide an improved understanding of the TBT sorption process, they may underestimate TBT binding to some natural sediments over longer time scales. This underestimation may lead to perceived requirements for sediment remediation in areas that pose little environmental risk and thereby divert funds from remediation projects where the risk is greater. The present study shows that aging may be an important consideration in TBT fate and is a subject warranting further research.	Klimisch 2- No replicates. 3 different types of sediment. Too high TBT- concentrations in sediment samples for Swedish conditions. Relevant TOC- levels in two of the locations (FS, MM).	Burton et al 2006
Kd values of TBT were determined by ASTM standard E1195-01 to	Scotland, UK: Bowling basin (BB),	The concentrations of TBT in water were 40, 80, 120,	Analyzed, but not specified in the article.	Sediment TOC BB: 12 %	Koc?	The Kd values depended on the following: (i) Organic carbon and	Klimisch 2 No replicates. Testing	Bangkedphol et al 2009a

OSPAR Commission 2020

Method	Environment	TBT conc (water)	TBT conc (sediment)	Physico- chemical	Koc and Kd	Conclusion in article	Validity/ Relevance	Reference
			(seament)	conditions			helevance	
measure TBT adsorption behavior (ASTM, 2001). The Kd value in the current study was obtained from the intercept of a log plot of the Freundlich equation to improve the correlation coefficient and assess the actual adsorption behavior of TBT.	Port Dundas (PD)and Clyde River (CR))	160, 200, 240 and 300 μg/mL.	(sediment)	chemical conditions PD: 17 % CR: 1,2 % pH 4, 5, 6, 7 and 8 0, 15, 32, 50 and 100 psu	log Kd: BB: 3,64 (4365) PD: 3,48 (3020) CR: 1,95 (89) 89 to 4909 L/kg depending on sediment properties, salinity, pH, and temperature.	clay mineral content which affected the sorption behavior (the lower the organic carbon, the lower the Kd). (ii) Salinity. The sorption was highest in freshwater and decreased at low and intermediate salinities indicating that bioavailability is higher in marine environments. At very high salinities, not typically experienced in the environment (100 psu), the Kd increased again. (iii) pH, the highest TBT adsorption of this study was at pH7 due to the charge contained on clay surfaces and dominant	Relevance corresponding to Tier 1 in OECD 106 with Freundlisch evaluation. TOC concentrations not applicable for Swedish conditions. TBT concentrations in sediment were not specified.	
Kd values of TBT were determined by ASTM standard E1195-01 to measure TBT adsorption behavior (ASTM, 2001). The method was developed by the author.	Scotland, UK: Bowling basin (BB) and Port Dundas (PD)	BB: 0.85 ±4.81 ppb PD: 0.17±1.72 ppb	BB: 162.31 ±0.13 ppb, PD: 148.89±0.51 ppb	Sediment BB: 12 % PD: 17 % PH BB: 8 PD: 8 Freshwater	logKoc, calculated from Kd: BB: 4.55 PD: 4.24 (Default value from EPI Suite V.3.20 was 4.18) log Kd: BB: 3,63 (4266) PD: 3,48 (3020)	species of TBT. (iv) Temperature, the adsorption of TBT on sediment slightly increases at higher temperature due to the reduction The comparison between values obtained experimentally and computated default model values (EPI Suite V. 3.20) differed. Koc values were higher than predicted, i.e. adsorption was stronger.	Klimisch 2- Simple model, no replicates. The aim of the model is to be simple. Too high TOC levels for Swedish conditions	Bangkedphol et al 2009b

Method	Environment	TBT conc (water)	TBT conc	Physico-	Koc and Kd	Conclusion in article	Validity/	Reference
			(sediment)	chemical			Relevance	
Content of butyltins in water and sediments were determined by reflux extraction and Kd values by using sorption isoterms (Freundlish equation)	Oslo Harbour (low TBT) Drammen (high TBT)	1-2000 μg/l (artifical seawater)	Oslo: 3.7 µg/kg DW Drammen: 4300 µg/kg DW	conditions TOC Oslo: 1.98 % Drammen: 3.7 % pH adjusted to around 8 (marine conditions) Artifical seawater, prepared according to Eckber gand	log K _{Toc} Oslo: 4.6 - 5.3 (L/kgtoc) log K _{Toc} Drammen: 5.5 (L/kgtoc) log Kd Oslo: 3.1 - 3.6 log Kd Drammen: 4.07	The black carbon and TOC sorption results showed that sorption to black carbon does not need to be considererd in TBT fate modeling. Further sthe study indicates that powdered active carbon (AC) may be a feasible remediation agent, since AC was found to strongly sorb TBT under marine conditions.	Klimisch 2+ No replicates. Testing corresponding to Tier 1 in OECD 106 with Freundlisch evaluation. Relevant for Swedish conditions	Brändli et al 2009
				Hill, no salinity reported in the article				
Granulometric analyses of sediments and thermogravimetric analysis accompanied by chemical analyses of water and sediments were performed (determination of organotin, carbon, nitrogen and sulfur, pH and salinity). The average values listed are based on 8 samples. The listed values are average values.	Water and sediment from the most contaminated quays in the portof Gdynia	Feb: 118.6 ng cation/l June: 46.5 ng cation/l Note: the table in the article is skew.	Feb, fine fraction: 4400 ng cation/g June, fine fraction: 3638 ng cation/g June, coarse fraction (whole sediment): 2805ng cation/g	Sediment Feb, fine fraction: 7.9 % June, Fine fraction: 7.2 % June, coarse fraction (whole sediment): 4.3 % Water pH Feb: 7.4 June: 7.7 Water Feb: 8.05 PSU June: 8.05 PSU	Koc? Concentrations of TBT in water and sediments during different conditions reported, but no calculation of sorption coefficients.	The drop in butyltin concentrations in the period from February to June was very high, especially for the sediment samples. This can be explained by higher photodegradation and possibly biodegradation rates and by a more alkaline pH in June which influenced desorption of BT from sediments to the water column.	Klimisch 2 No replicates. Testing corresponding to Tier 1 in OECD 106 Too high TBT concentrations in sediment samples for Swedish conditions. Levels of TOC, pH and salinity are relevant.	Radke et al 2013

9. SUPPORTIVE INFORMATION: EqP CALCULATIONS

Calculations were based on equations and the default values given in European Communities (2011).

$$Kp_{sed} = Foc_{sed} \times K_{oc}$$

$$K_{\rm air-water} = \frac{H}{R \times TEMP}$$

$$K_{\text{sed-water}} = Fair_{\text{sed}} \times K_{\text{air-water}} + Fwater_{\text{sed}} + Fsolid_{\text{sed}} \times \frac{Kp_{\text{sed}}}{1000} \times RHOsolid$$
3

$$QS_{\text{sediment, EqP, ww}} = \frac{K_{\text{sed-water}}}{RHO_{\text{sed}}} \times QS_{\text{fw, eco}} \times 1000$$
4

$$CONV \text{sed} = \frac{RHO_{\text{sed}}}{F \text{solid}_{\text{sed}} \times RHO \text{solid}}$$
5

$$QS_{\text{sediment, EqP, dw}} = CONV \text{sed} \times QS_{\text{sediment, EqP, ww}}$$
 6

Parameter	Description	Unit	Default
			value
1000	conversion factor from m ³ to litre	L m ⁻³	1000
Cporewsed	total concentration in pore water of sediment	mg m ⁻³	
Ctotalsed	total concentration in sediment	mg m ⁻³	
Fair _{sed}	fraction air in sediment	m ³ m ⁻³	0
Focsed	weight fraction of organic carbon in sediment	kg kg ⁻¹	0.05
Fsolid _{sed}	fraction solids in sediment	-	0.2
Fwater _{sed}	fraction water in sediment	m ³ m ⁻³	0.8
Н	Henry's law constant	Pa m ³ mol ⁻¹	
<i>K</i> air-water	air-water partition coefficient	m ³ m ⁻³	
K _{oc}	partition coefficient between organic carbon and water	L kg ⁻¹	
Kpsed	partition coefficient solid-water in sediment	L kg ⁻¹	
K _{sed-water}	partition coefficient between sediment and water	m ³ m ⁻³	
R	gas constant	Pa m ³ mol ⁻¹ K ⁻¹	8.314
RHO sed	bulk density of wet sediment	kg _{ww} m ⁻³	1300
<i>RHO</i> solid	density of the solid phase	kg _{solid} m _{solid} -3	2500
ТЕМР	environmental temperature	К	285
<i>CONV</i> sed	conversion factor for sediment concentration wet-dry weight sediment	kg _{ww} ·kg _{dw} -1	
QSsediment, EqP, dw	dry weight quality standard for sediment based on equilibrium partitioning	mg kg _{dw} -1	
QS sediment, EqP, ww	wet weight quality standard for sediment based on equilibrium partitioning	mg kg _{ww} -1	
QS _{fw, eco}	quality standard for direct ecotoxicity on freshwater aquatic organisms	mg L ⁻¹	

9.1 Calculations

Values in bold indicates that these values are influenced if using another Koc.

$$Kp_{sed} = Foc_{sed} \times K_{oc}$$

= 0.05 x **40000** =<u>2000</u>

1

$$K_{\text{air-water}} = \frac{H}{R \times TEMP}$$

Equation 2 not calculated since the first product of the equation 3 will be zero based on the default value specified for fraction air in the sediment (Fair_{sed}) which means that Fair_{sed} x K_{air-water} will be equal to 0 regardless of value calculated for K_{air-water}.

$$K_{\text{sed-water}} = Fair_{\text{sed}} \times K_{\text{air-water}} + F\text{water}_{\text{sed}} + F\text{solid}_{\text{sed}} \times \frac{Kp_{\text{sed}}}{1000} \times RHO\text{solid}$$

= 0 + 0.8 + 0.2 x [**2000** /1000] x 2500=<u>1000.8</u>

$$QS_{\text{sediment, EqP, ww}} = \frac{K_{\text{sed-water}}}{RHO_{\text{sed}}} \times QS_{\text{fw, eco}} \times 1000$$
4

= [**1000.8** /1300] x 0.0000002 x 1000 = <u>0.000154</u>

$$CONV \text{sed} = \frac{RHO_{\text{sed}}}{F\text{solid}_{\text{sed}} \times RHO\text{solid}}$$
5

= 1300 /[0.2 x 2500] =<u>2.6</u>

$$QS_{\text{sediment, EqP, dw}} = CONV \text{sed} \times QS_{\text{sediment, EqP, ww}}$$
 6

= 2.6 x 0.000154= 0.0004 (mg/kg) – EqP QS of 0.4 µg/kg dw, at 5 % TOC

When LogKow is greater than 5 the calculated EqP QS should be divided by an AF of 10 to take into account uncertainties regarding uptake through diet. In the case of TBT, the LogKow was below 5 (varying between 3.1 and 4.1 according to the substance data sheet), hence, a AF was not required.

Parameter	Value used in the calculation	Unit	Comment
Fairsed	0	m ³ m ⁻³	Default
Focsed	0.05	kg kg⁻¹	Default
Fsolid _{sed}	0.2	-	Default
Fwatersed	0.8	m ³ m ⁻³	Default
K _{oc}	40000	L kg ⁻¹	
Kp _{sed}	2000	L kg ⁻¹	Based on equation 1
$K_{ m sed-water}$	1000.8	m ³ m ⁻³	Based on equation 3
R	8.314	Pa m ³ mol ⁻¹ K ⁻¹	Default
<i>RHO</i> sed	1300	kg _{ww} m⁻³	Default
<i>RHO</i> solid	2500	kg _{solid} m _{solid} -3	Default
ТЕМР	285	К	Default
<i>CONV</i> sed	2.6	kg _{ww} ·kg _{dw} -1	Based on equation 6
QSsediment, EqP, ww	0.000154	mg kg _{ww} -1	Based on equation 5
QSfw, eco	0.000002	mg L ⁻¹	EQS of 0,0002 μg/l = 0,0000002 mg/l according to 2008/105/EG.

The Aspect 12 Finsbury Square London EC2A 1AS United Kingdom t: +44 (0)20 7430 5200 f: +44 (0)20 7242 3737 e: secretariat@ospar.org www.ospar.org

OSPAR's vision is of a clean, healthy and biologically diverse North-East Atlantic used sustainably

ISBN: 978-1-913840-01-3 Publication Number: 762/2020

© OSPAR Commission, 2020. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated.

© Commission OSPAR, 2020. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l'Editeur, sous réserve que l'origine de l'extrait soit clairement mentionnée.