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Executive Summary

The disposal of drill cuttings and produced water has become a major concern for operators and
environmental controls have been tightened by regulatory authorities. One of the techniques the industry has
developed to overcome the disposal problem is to grind up the drill cuttings and then inject them into a
subsurface formation where they are likely to remain for the indefinite future. Injection has also been used to
dispose of or recycle produced water. The following paper concentrates on drill cuttings but the same
principles, with exceptions made in the relevant sections apply to the injection of produced water. Few
solutions are without some associated risks and the possible impact on the environment of this disposal route
needs to be considered on a case by case basis. With the exception of transport, these risks should be similar
for both on and off-site injection operations.

This report details the consideration of these risks and provides an overview of the likely environmental
impact.

There are few reported problems associated with the disposal of drill cuttings by re-injection into
subterranean formations. Of most concern from the environmental point of view is the contamination of
shallow fresh water aquifers or breakthrough to surface, i.e. ground level or seabed. There is little reported
evidence of such breakthroughs happening, a result, in part at least, of the target intervals selected being
such that the fracture is contained by features such as sand intervals and stress contrasts. At shallow depths
(<600m) the minimum stress is often vertical, and in such cases the fracture (if it extends so far) will then
propagate horizontally rather than vertically, and consequently not breach shallower zones.

Problems may also arise through the intersection of an induced fracture with an existing well, or the
intersection of a new well with a fracture generated by a previous disposal operation. In the former case the
casings would generally be expected to be adequate, and if a leak did occur this should be apparent on the
well’s annulus pressure and could be controlled by ceasing disposal operations and bleeding off any excess
pressure. This risk is usually minimised by appropriate selection of the disposal location, e.g. distant with
suitable directions for the minimum stress. The risk associated with the penetration of an open disposal
fracture when drilling a new well is considered fairly minor. In essence the impact and response would be
similar to that for a high pressure water influx (kick) and controlled by normal methods.

There is some risk that the integrity of the disposal well will fail during the operation. Any such failure
should quickly be apparent as a discontinuity on the injection pressures, the operation would then cease and
the volumes lost would be small. Investigations of the well head (the most environmentally critical item)
indicate that wear is likely to be small so the risk in any event is relatively small. Poor quality cement jobs
are another area of concern since these can allow channelling of injected material around the well. Careful
monitoring of both the cementing operation and subsequent injection pressures is crucial.

One potential problem area is the impact of natural faults. The response in these circumstances is less
predictable, and in particular regions of hard rocks should be avoided. Softer rocks which tend to flow
would not have the same problem and would be expected to shield disposal intervals.

Although the probability of environmental contamination occurring is small, consideration also needs to be
given to the impact of any such contamination. However, chromatographic retention of sensitive substances
by clays and shales in the formations is likely to be strong. One risk which is not generally considered is the
generation of H2S in the injected material after disposal. This may result in unexpected levels of H2S if a
disposal fracture is intersected by another well or if other contamination does occur. There are, however,
well developed techniques to both avoid and minimise such contamination.

If contamination of a shallow aquifer does occur in the North Sea region it is unlikely to present a
significant hazard. The geological and hydrological conditions are such that flow from the point of
contamination to land is very unlikely. As in all aspects of potential contamination, each case needs to be
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considered on its own merits. The contamination of possible potable water sources would not always be so
improbable in locations closer to land or with a different geological situation.

Simulation of the disposal operation for a generic situation representative of the Northern North Sea region
confirms the conclusions of previous studies that environmental contamination is unlikely. A conclusion
confirmed, at least by those reported, by the results of drill cuttings re-injection operations in the region. In
essence, with the particular geology, it is difficult to assign realistic rock mechanical parameters which will
allow a fracture to propagate close to seabed. The vertical propagation of the fracture is usually terminated
by sand layers with significant leak-off. To obtain fracture growth close to surface, regions of low stress
with zero permeability and exceptionally high stiffness are required. This scenario is very unlikely in much
of the OSPAR area although it may be possible in certain localities. For this reason the guidance listed
below should be followed.

Although environmental contamination from drill cuttings or produced water (re-)injection is considered
unlikely in much of the OSPAR area this may not be generally the case. Specific situations should always be
investigated before disposal operations commence. It is recommended that in all cases the situation for the
proposed disposal well should be simulated and subsequently monitored. Sensible precautions would
include:

- Modelling of the situation to obtain an understanding of the main features which will affect the
fracture growth and the associated characteristics, and making predictions of injection
characteristics for subsequent monitoring and comparison.

- Careful monitoring the quality of any cementing around any well to be used for injection.

- Monitoring the injection parameters (rates and pressures) and comparing with predictions.
When deviations are observed operations would need to cease, at least until it was firmly
established that the deviation did not indicate undue vertical propagation of the fracture.

- During disposal operations the annulus pressures of nearby wells should be monitored to check
for possible fracture intersection with the well. Pressure increase from swelling of reactive
clays should also be modelled and monitored.

- A review of the long term considerations should be made so that the risk to potential potable
water sources would be established prior to any initiation of the disposal fracturing operations.

- Alternative disposal options for use on a contingency basis should be prepared.

Further detailed guidance can be found in OGP (E&P Forum) Guidelines on injection of both cuttings and
produced water [15] [38].
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Récapitulatif

L’élimination des déblais de forage et de l’eau de production est devenue une préoccupation de premier plan
pour les opérateurs, et la réglementation environnementale a été renforcée par les autorités chargées de
tutelle. L’une des techniques que l’industrie a développé pour résoudre le problème de l’élimination consiste
à broyer les déblais de forage puis à les injecter dans une formation souterraine où il est probable qu’ils
resteront indéfiniment. Bien que le document ci-après soit centré sur les déblais de forage, les mêmes
principes, avec les exceptions mentionnées dans les chapitres correspondants, s’appliquent à l’eau de
production. Rares sont les solutions qui ne donnent pas lieu à certains risques, et l’impact que cette méthode
d’élimination est susceptible d’avoir sur l’environnement devra être considéré au cas par cas. A l’exception
du transport, ces risques devraient être les mêmes, que ce soit pour les opérations d’injection sur site ou hors
site.

Le présent rapport rend compte en détail de l’étude de ces risques, et donne une vue d’ensemble de l’impact
environnemental probable.

Peu de problèmes ont été signalés en ce qui concerne l’élimination des déblais de forage par ré-injection
dans les formations souterraines. La chose la plus préoccupante sur le plan de l’environnement tient à la
contamination des nappes phréatiques d’eau douce, ou une remontée à la surface, autrement dit soit au
niveau du sol, soit au niveau du fond marin. Peu d’indices de ces remontées ont été signalés, ce qui résulte, à
tout le moins en partie, du fait que les intervalles cibles sélectionnés étaient tels que la fracture a été
contenue par des caractéristiques telles que les distances entre les strates de sable et les contrastes des
contraintes. A faible profondeur (<600 m), c’est souvent à la verticale que la plus petite des forces s’exerce,
et dans de tels cas, la fracture (si elle s’étend jusque là) se propage ensuite horizontalement et non plus
verticalement, et de ce fait même, n’empiète pas sur les zones moins profondes.

Des problèmes peuvent aussi se poser du fait de l’intersection d’une fracture induite avec un puits existant,
ou de l’intersection d’un nouveau puits avec une fracture engendrée par une opération d’élimination
antérieure. Dans le premier cas, le cuvelage devrait en général être adéquat, et si une fuite se produisait, elle
devrait se manifester dans la pression annulaire du puits, et pourrait être combattue par la cessation des
opérations d’élimination et en purgeant la pression excédentaire. On minimise en général ce risque en
sélectionnant convenablement le lieu de l’élimination, par exemple à l’écart, avec des orientations adéquates
et permettant d’obtenir des contraintes minimales. Le risque de pénétration d’une fracture d’élimination
ouverte au moment du forage d’un nouveau puits est considéré comme assez faible. En l’essence, l’impact et
la réaction seraient semblables à ceux d’un influx d’eau sous haute pression (venue) et seraient contrôlés par
des méthodes normales.

Il existe un certain risque que le puits d’élimination perde son intégrité pendant l’opération. Toute
défaillance de ce type devrait se manifester rapidement sous la forme d’une discontinuité des pressions
d’injection, l’opération étant alors interrompue, les volumes ainsi perdus étant faibles. Les études des têtes
de puits (éléments les plus critiques sur le plan de l’environnement) indiquent que l’usure a toutes chances
d’être faible, de telle sorte qu’en tout état de cause, le risque est relativement faible. Le fait que la
cimentation ne soit pas bien faite constitue une autre préoccupation car un tel état de choses peut conduire à
canaliser à la périphérie du puits le matériau ainsi injecté. Une surveillance attentive de l’opération de
cimentation ainsi que des pressions d’injection ultérieures est fondamentale.

L’un des problèmes potentiels tient à l’impact des failles naturelles. Dans ces conditions, la réponse est
moins prévisible, et il convient en particulier d’éviter les régions de roche dure. Les roches plus tendres
tendant à fluer ne posent pas les mêmes problèmes, et devraient faire écran entre les intervalles
d’élimination.

Bien que la possibilité d’une contamination environnementale soit faible, il convient néanmoins aussi de
considérer l’impact de toute contamination de ce type. Toutefois, la rétention chromatographique des
substances sensibles par les argiles et les schistes dans les formations a des chances d’être forte. L’un des
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risques qui n’est en général pas pris en compte est la formation de H2S dans le matériau injecté, après
l’élimination. Ce phénomène peut aboutir à des teneurs inattendues en H2S si la fracture d’élimination est
coupée par un autre puits ou si une autre contamination se produit. Il existe toutefois des techniques bien au
point pour éviter et minimiser une telle contamination.

Si une nappe phréatique peu profonde est contaminée dans la région de la mer du Nord, il est peu probable
qu’elle puisse présenter un danger important. Les conditions géologiques et hydrologiques sont telles qu’il
est fort peu probable que l’eau puisse passer du point de contamination à la terre. Dans tous les aspects
d’une contamination potentielle, le pour et le contre doivent être considérés au cas par cas. La contamination
des sources potentielles d’eau potable n’est pas toujours aussi improbable dans les lieux plus proches de la
terre ou dans une situation géologique autre.

La simulation d’une opération d’élimination pour une situation générique représentative de la région
septentrionale de la mer du Nord confirme les conclusions des études précédentes, à savoir qu’une
contamination de l’environnement est peu probable. Conclusion confirmée, à tout le moins lorsqu’ils ont été
communiqués, par les résultats des opérations de ré-injection des déblais de forage effectuées dans la région.
En l’essence, dans le cas de la géologie en question, il est difficile d’imputer à la roche des paramètres
mécaniques réalistes et de créer ainsi les conditions qui permettraient à une fracture de se propager jusqu’à
un point proche du fond marin. La propagation verticale d’une fracture est en général interrompue par les
strates de sable, ceci avec une forte pression de fuite. Pour qu’une fracture se développe près de la surface, il
faut une région où les contraintes sont faibles, dont la perméabilité soit nulle et dont la rigidité soit
exceptionnelle. Ce scénario est hautement improbable dans une grande partie de la zone d’OSPAR, même
s’il est possible à certains endroits. Pour cette raison, il conviendrait de suivre les indications données
ci-après.

Bien qu’une contamination de l’environnement par des déblais de forage ou par de l’eau de production
(ré)injectés soit considérée comme peu probable dans une grande partie de la zone OSPAR, cette situation
n’est peut-être pas universelle. Les situations particulières devraient toujours faire l’objet d’une étude avant
le début des opérations d’élimination. Il est recommandé que dans tous les cas, la situation du puits
d’élimination envisagé soit simulée et ultérieurement surveillée. Logiquement, les précautions à prendre
seraient notamment les suivantes :

� Modélisation de la situation, pour comprendre les principales caractéristiques qui influeront sur
la croissance de la fracture et sur les caractéristiques connexes, et prévoir ainsi les
caractéristiques d’injection en vue d’une surveillance et d’une comparaison ultérieures.

� Surveillance attentive de la qualité de toute cimentation autour de tout puits devant servir à
l’injection :

- Surveillance des paramètres de l’injection (taux et pressions) et comparaison avec les
prévisions. Lorsque des écarts sont constatés, les opérations doivent être interrompues, à
tout le moins jusqu’à ce que l’on soit certain que l’écart n’est pas l’indice d’une
propagation verticale inopportune de la fracture.

- Pendant les opérations d’élimination, les pressions annulaires des puits à proximité
devraient être surveillées, afin de s’assurer qu’il n’y a pas d’intersection entre la fracture
et l’un des puits. L’augmentation de la pression, due au gonflement des argiles réactives,
devrait aussi être modélisée et surveillée.

- Il conviendrait de procéder à une étude prenant en compte les considérations sur le long
terme, de telle sorte que le risque pour les sources potentielles d’eau potable soit établi
avant tout démarrage des opérations d’élimination dans des fractures.

- Il conviendrait de préparer d’autres options d’élimination auxquelles il serait possible de
recourir en cas d’imprévu.

On trouvera d’autres indications détaillées dans les Lignes directrices OGP (Forum E&P) relatives à
l’injection des déblais de forage et de l’eau de production [15] [38].
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1. Introduction

1. The disposal of drill cuttings and produced water has become a major concern for operators and
environmental controls have been tightened by regulatory authorities. One of the techniques the industry has
developed to overcome the disposal problem is to inject drill cuttings as ground up material into a
subsurface formation where it is likely to remain for the indefinite future. Injection has also been used to
dispose or recycle produced water. The following paper concentrates on drill cuttings but the same
principles, with the exceptions referred to in the appropriate section applying to injection of produced water.
Few solutions are without some associated risks and the possible impact on the environment of this disposal
route needs to be considered. The risks to be considered are associated with:

� the disposal operation:

- Fracture growth to surface or into and contamination of shallow fresh water aquifers

- Communication of the induced fracture with existing wells in the field

- Well integrity

- Fault re-activation

� subsequent to completion of the disposal:

- Effectiveness of sealing the injection point

- Impact of changes in fracture dimensions

- New wells drilling through fracture containing drill cuttings material

- Long term interaction of injected chemicals and the formation

2. This report details the consideration of these risks and provides an overview of the likely
environmental impact.

2. Conclusions

3. There are few reported problems associated with the disposal of drill cuttings by re-injection into
subterranean formations. From the environmental point of view, the most concern is the contamination of
shallow fresh water aquifers or breakthrough to surface, i.e. ground level or seabed. There is little reported
evidence of such breakthroughs happening, a result, in part at least, of the selection of the target intervals
being such that the fracture is contained by features such as sand intervals and stress contrasts. At shallow
depths (<600m) the minimum stress is often vertical, in such cases the fracture (if it extends so far) will then
propagate horizontally rather than vertically and consequently not breach shallower zones.

4. Problems may also arise through the intersection of an induced fracture with an existing well or the
intersection of a new well with a fracture generated by a previous disposal operation. In the former case the
casings would generally be expected to be adequate, if a leak did occur this should be apparent on the well’s
annulus pressure and could be controlled by ceasing disposal operations and bleeding off any excess
pressure. This risk is usually minimised by appropriate selection of the disposal location, e.g. distant with
suitable directions for the minimum stress. The risk associated with the penetration of an open disposal
fracture when drilling a new well is considered fairly minor. In essence, the impact and response would be
similar to that for a high pressure water influx (kick) and controlled by normal methods.

5. There is some risk that the integrity of the disposal well will fail during the operation. Any such
failure should quickly be apparent as a discontinuity on the injection pressures, the operation would then
cease and the volumes lost small. Investigations of the well head (the most environmentally critical item)
indicate that wear is likely to be small so the risk in any event is relatively small. The quality of cementing is
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crucial, as it is for normal producing wells, and there is at least one report of a leak of injected material
resulting from a poor cement job.

6. One potential problem area is the impact of natural faults. The response in these circumstances is less
predictable, and in particular regions of hard rocks should be avoided. Softer rocks which tend to flow
would not have the same problem and would be expected to shield disposal intervals.

7. Although the probability of environmental contamination of seawater and breakthrough or migration
of the cuttings slurry or parts of it to surface, i. e. ground level or seabed is small, consideration also needs
to be given to the impact of any such contamination, as the material disposed could contain a wide range of
oilfield chemicals, although primarily mud components, as well as the drill cuttings. However,
chromatographic retention of sensitive substances by clays and shales in the formations is likely to be
strong. One risk which is not generally considered is the generation of H2S in the injected material after
disposal. This may result in unexpected levels of H2S if a disposal fracture is intersected by another well or
if other contamination does occur. There are, however, well-developed techniques to both avoid and
minimise such contamination.

8. If contamination of a shallow aquifer does occur in the North Sea region it is unlikely to present a
significant hazard. The geological and hydrological conditions are such that flow from the point of
contamination to land is very unlikely. As in all aspects of potential contamination, each case needs to be
considered on its own merits. The contamination of possible potable water sources would not always be so
improbable in locations closer to land or with a different geological situation.

9. Simulation of the disposal operation for a generic situation representative of the Northern North Sea
region confirms the conclusions of previous studies that environmental contamination is unlikely. A
conclusion confirmed, at least by those reported, by the results of drill cuttings re-injection operations in the
region. In essence, with the particular geology, it is difficult to assign realistic rock mechanical parameters
which will allow a fracture to propagate close to seabed. The vertical propagation of the fracture is usually
terminated by sand layers with significant leak-off. To obtain fracture growth close to surface, regions of
low stress with zero permeability and exceptionally high stiffness are required. This scenario is very
unlikely in much of the OSPAR area although it may be possible in certain localities. For this reason the
guidance listed below should be followed.

3. Recommendations

10. Although environmental contamination from drill cuttings or produced water (re-)injection is
considered unlikely in much of the OSPAR area this may not be generally the case. Specific situations
should always be investigated before disposal operations commence. It is recommended that in all cases the
situation for the proposed disposal well should be simulated and subsequently monitored. Sensible
precautions would include:

- Modelling of the situation to obtain an understanding of the main features which will affect the fracture
growth and the associated characteristics, and making predictions of injection characteristics for
subsequent monitoring and comparison.

- Monitoring the injection parameters (rates and pressures) and comparing with predictions. When
deviations are observed operations would need to cease, at least until it was firmly established that the
deviation did not indicate undue vertical propagation of the fracture.

- During disposal operations the annulus pressures of nearby wells should be monitored to check for
possible fracture intersection with the well. Pressure increase from swelling of reactive clays should also
be modelled and monitored.

- A review of the long term considerations should be made so that the risk to potential potable water
sources would be established prior to any initiation of the disposal fracturing operations.

- Alternative disposal options for use on a contingency basis should be prepared.
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11. Further detailed guidance can be found in OGP (E&P Forum) Guidelines on injection of both cuttings
and produced water [15] [38].

4. Operational and technical aspects of drill cuttings re-injection

4.1 Background

12. The re-injection of drill cuttings was initiated in Alaska [ 1] and [ 2] as a cost effective option to
comply with environmental regulations relating to their disposal. Subsequently the procedure was adopted in
the Gulf of Mexico [ 3] and other environmentally sensitive regions including the North Sea [ 4-9] and the
Mediterranean [ 10].
The literature includes considerations of the potential risks and their impact, as well as reporting the
operations and the effectiveness of the implementation.

13. An example of cuttings re-injection (CRI) is the pilot process introduced in Shell Expro’s Brent field
in 1994 [ 11]. An outline of the process is shown in Figure 1. The cuttings discharged from the shale shakers
are fed into a slurrification unit where an initial cuttings slurry is formed by the addition of sea water. This
slurry is pumped to the grinding unit. The cuttings are ground to the required specification and then injected
into the disposal well.

Figure 1. Brent Alpha/Delta CRI Process [ 11].

Cuttings from Drill Well

Shaker Screens

Previously
Cuttings to Sea

Mix Tank

Centrifugal Pump

Mill

Slurry Tank

Sea Water

Centrifugal Pump

Injection Pump

Disposal Well

Sea Water

14. Clearly any material that has been trapped or retained by the drill cuttings will be processed and
ultimately injected along with the ground drill cuttings.

15. The cuttings are injected either through tubing to an open formation at the base of a well or down a
casing annulus which has an appropriate interval which is un-cemented between the two casing shoes. The
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design for any particular implementation will depend on the target formation, injection volumes, well
flexibility (‘dedicated’, position), casing strengths, etc. In each case the design/planning needs to, and
generally has, taken account of possible impacts on the environment.

Fracture growth into and contamination of shallow fresh water aquifers

16. The main environmental concern is the potential for breaching the surface (seabed) or the introduction
of contaminants to fresh water aquifers, particularly if these are shallow and might be used as a source of
potable water or for agricultural applications. The concern relates to the fracture growth, particularly
vertically, from the injection interval. In general the contamination of such aquifers distant offshore is of
less concern as the aquifers are unlikely to be used as potable sources. A view would still need to be taken as
to whether there is flow in these formations which might result in production of the contaminants on shore at
a much later date.

17. This fracture growth depends on a number of factors, primarily, the in-situ stress distribution,
Young’s Modulus, Poisson’s ratio, injection volumes, injection rates and the formation lithology. A number
of (3D/pseudo 3D) rock mechanics codes exist which have been used to predict the likely propagation of
induced fractures. The predictions, however, are dependent on the parameters indicated above, which are
often not well known. However, sensitivities are generally carried out covering a wide range of values and
the planned implementations generally take account of the most pessimistic scenarios.

4.2.1 In-situ stress distribution

18. Ideally a low stress interval bounded above and below by high stress zones is most desirable for the
cuttings disposal. However, such situations are dependent upon nature and their absence does not
necessarily preclude a successful implementation without excessive upward growth to the surface or a
shallow aquifer. Depending on the injection volume, the vertical growth of the fracture may still not
approach any prohibited regions.

19. If a sandstone is selected as the target horizon then it can also be possible to induce a low stress
region by cooling the formation by the injection of cold water ahead of the disposal.

20. At shallow depths (600m) the minimum stress direction is often vertical, in which case the fracture
will propagate horizontally rather than vertically, consequently reducing the risk of breaching the surface or
contaminating a shallow aquifer [ 11, 12].

4.2.2 Characteristics of Target Strata (Lithology impact)

21. Cuttings injection is commonly to a clay/shale or sandstone formation. These formations can have
quite different effects on the fracture propagation.

Clays/shales:

22. Injection into clays/shales will generally result in minimal fluid leak-off and the fate of the cuttings
slurry is dependent upon chemical reaction/interaction with the surrounding clays. In the North Sea the
Tertiary shales are usually reactive with water based fluids, over time the water carrying fluid reacts with
the swelling clays (refer Sections 4.4 and 5).

23. Sand layers can act as effective barriers to vertical propagation of the fracture in a clay/shale
formation when the clay/shale formation is the target repository for the injected material. When the fracture
initially penetrates the sand layer, leak off of the liquid occurs leaving a filter cake/dehydrated slurry which
restricts further flow and plugs the fracture so that the fracture will extend in a different direction, e.g.
laterally underneath the sand. Every time the fracture tries to penetrate the sand the same screen out effect
will occur, providing an effective block to vertical propagation [ 6]. The effectiveness of the block is
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dependent to some extent upon the thickness of the sands. Very thin sands can be penetrated by the fracture
so that vertical migration could then continue. However, even then continued fluid loss at the sand will
increase the pressure drop across the sand interval and promote lateral extension of the fracture. The
effectiveness of the screen out is enhanced by incorporating larger particle sizes in the slurry so that the
screen out is rapid when the fracture hits a permeable (sand) interval [ 13]. Laboratory data reported in [ 7]
supports the screen out theory for when the fracture penetrates a permeable sand.

24. In these circumstances the whole injected volume will need to be contained within the induced
fracture network in the clay/shale and the fractures will tend to be extensive.

Sandstone:

25. In a permeable sandstone, high leak off and dehydration of the slurry will result [ 4, 12]. In these
circumstances small particle sizes are incorporated in the slurry to minimise the rate of fluid loss and filter
cake build-up, and the risk of screen out. Providing screen out is avoided (and injection blocked) then the
induced fracture needs only to contain a portion of the liquid as well as the solids. The fracture is likely to
be shorter and thicker than those generated in low permeability clay/shale formations. As a result the
fracture is less likely to break out of the injection zone.

26. Alternating sand shale stratigraphy can provide a strong impairment to vertical fracture growth.
Because of differences in mechanical properties the sand zones will expand more than the shales, leading to
shearing and slip at the sand-shale interfaces. Climbing fractures will tend to flatten and migrate along the
planes of weakness [ 12].

4.3 Communication of the induced fracture with existing wells in the field

27. The induced fractures can be, and usually are, laterally very extensive. Consequently there is always
some chance that the fracture will intersect the well track of an existing well. The main risk here is that the
fracture/well intersection is at an open annulus - not that unrealistic if the configuration of the disposal well
is typical of that of the standard well in the field. The impact of such an intersection is that the annular
pressure will increase to the fluid fracturing pressure, partially compensated by any fluid head in the
annulus. It would generally be expected that the casings would be strong enough to withstand the pressure
(unless special casings were used in the disposal well), but in any case the capability of the casings to
withstand the pressure would need to be checked. The main risk is associated with the high pressure on the
annulus at the well head. When conducting a cuttings disposal operation the annular pressures of existing
wells would need to be regularly monitored. If a significant pressure increase was observed in any well then
its correlation with the disposal well injection should be checked and, if confirmed, injection halted. The
annular pressure can then be bled off once the fracture closes with the absence of the injection pressure. A
leak in one of the casings near surface or at the well head would cause environmental contamination of the
sea or a shallow formation and needs to be avoided. The quality of cementing is crucial, as it is for normal
producing wells, and there is at least one report of a leak of injected material resulting from a poor cement
job.

28. Operators have tried to minimise the risk of intersection with another well by generally choosing a
disposal well on the fringes and one where the fracture propagation is in a direction which is not likely to be
towards one of the existing wells in the field [ 14]. An alternative is to inject deep where wells are more
distant from each other [ 5].
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4.4 Intersection of new wells with fractures containing cuttings

29. Concern regarding the penetration of an open fracture by a new well is generally considered to be
fairly minor [ 6]. Fluid pressure would at most be of the order of the overburden gradient, although this
could be significantly higher than the mud weight and there could be some inflow. However, the influx
would be of limited volume, although the initial rate could be quite high, as the disposal fracture would start
to close in the region of pressure relief, i.e. the intersection at the well bore. After an initial influx the
fracture will close. Long-term effects will be small as the casings to be used would be similar to those used
in the disposal well for which it was deemed to be safe.

30. Also, when injecting just into shales the fluid leak-off is minimal and the fate of the cuttings slurry is
dependent upon the chemical reaction/interaction with the surrounding shale. The Tertiary shales in the
North Sea are usually reactive with water based fluids, over time the water carrying fluid reacts with the
swelling clays with the slurry becoming increasingly more viscous (and dehydrated) within the fracture. The
‘swollen’ clay region adjacent to the fracture will be localised. The net result is that the clay will be soft and
the slurry will be effectively solid, consequently intersection by a subsequent well can be expected to fairly
trouble free. The worst case is likely to be a tight spot in the well where the already softened clays have
squeezed into the well bore [ 4].

31. In the case of sands the main impact of the cuttings disposal will be a general increase in the fluid
pressure, the ground up cuttings being dehydrated and effectively solid. Unless the sand is of very limited
volume the increase in fluid pressure will be small and consequently there will be minor, if any, effect on
the pressures likely to be experienced when drilling a new well. An aspect not previously considered is that
H2S could be associated with any inflow as a result of microbial activity on the injected material in the
fracture or formation (refer Section 5.7).

4.5 Well integrity

32. If a well bore fails during the disposal operation then there could be some contamination of the sea (if
close to the wellhead) or shallow aquifers (depending on the depth of the failure). Any contamination should
be minor as any such failure would be expected to have an associated discontinuity in injection pressure, at
which time the disposal process should be suspended until the cause of the change was established. The
volumes lost in these circumstances should be small.

33. The main concern regarding the integrity of the disposal well is the effect of erosion on the well head
(where velocities are highest) and casings. Experiments have been reported which indicate that erosion of
the wellhead is relatively minor providing injection rates (velocities) are constrained, after injection of
38 000 bbls at 5 bpm the erosion caused less than 10% loss of the nominal wall thickness [ 8], or only
localised polishing after 13 000 bbls [ 9]. These experimental results are supported by theoretical
calculations [ 6]. The safety margin considered in the design of wellhead and casing equipment is
substantially larger than this.

4.6 Local Faults/Fractures

34. The proximity of faults close to the injection/disposal zone has the potential for serious problems
 [ 15 ].

- The local stress regime could be distorted as a result of the historic tectonic activity.

- The faults could provide conduits for the waste material to flow away from the selected zone and
potentially contaminate shallower aquifers or even break through to seabed.

- The fault(s) could be reactivated by the fracturing pressures associated with drill cuttings re-injection
with potential consequences relating to any induced local tectonic movements.
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35. Monitoring of the injection pressure should provide an indication of changes in the local stress regime
away from the well or if the fault is acting as a conduit for the injected material. In those cases the response
would need to be analysed and, if necessary, injection terminated. If a fault was reactivated the impact might
be more dramatic and this injection near such faults should be avoided.

36. In general a faulted region of relatively hard rocks should be avoided for the cuttings disposal
operation. Softer rocks which tend to flow, e.g. clays, salt, would not have the same problem and would be
expected to shield disposal intervals, or in the case of the clays be potential target zones. As always, case-
by-case modelling is essential before injection commences.

37. On the other hand the presence of natural fractures and vugs within the target zone (particularly a
tight interval) is likely to be advantageous. The cuttings slurry would move through the fracture network as a
viscous fluid, displacing the in-situ fluid ahead of it. The fluid would stay in the target zone with pressures
reflecting fluid dynamics rather than fracturing requirements.

5. Environmental Management

38. Residual materials from drilling and completion operations consist mainly of drill cuttings, drilling
fluids and completion fluids. All processes involved in disposal or recycling of these residual materials will
have an environmental impact. These impacts may in some cases be harmful for the environment and in
other cases insignificant.

39. The successful completion of drilling an oil well depends to a large extent on the properties of the
drilling fluid. The properties of the drilling fluid are controlled by the many additives which are used, many
to tailor the drilling mud to a given application. Consequently there are a multitude of materials which are
used in drilling muds. Almost all of these materials will adhere to drill cuttings used for re-injection. This
section considers the environmental management and impact of potential interactions between re-injected
cuttings and associated materials with the rock and fluids of the formation into which injection occurs.
References [ 16] and [ 17] discuss the various properties and uses of drilling fluids as well as reviewing the
sources of many of the components.

40. There are few reported problems associated with the disposal of drill cuttings by injection into
subterranean formations. From the environmental point of view the concern is the potential contamination of
shallow fresh water aquifers or breakthrough to surface, i.e. ground level or seabed. There is little reported
evidence of such breakthroughs happening, a result, in part at least, of the selection of the target zones being
such that the fracture is contained by features such as sand intervals and stress contrasts. In the United
States, the EPA regulates injection taking into account factors such as the industrial activity producing the
injected material, the location of the well and the type of material to be injected. In the Netherlands
produced water has been injected for disposal onshore since 1970, in depleted gas reservoirs only, where
geological and reservoir properties (e.g. presence of a cap rock, fracture behaviour) are well known in order
to ensure confinement and containment. Where there is any doubt or uncertainty as to the geological
conditions in the receiving reservoir a “mini-fracture” may be made to validate the injection model

41. Negative environmental impacts associated with injection appear to be minor, and research conducted
indicates that the risk of breakthrough to the surface – i.e. the major concern with injection – to be minimal.
The major potential drawback to offsite injection is that injected drill cuttings might leave an injection zone
that is not under direct control of the waste producer and come in contact with ground water or sea water.

42. Environmentally, cuttings injection may be considered in many cases to be the preferred solution.
Although emissions of combustion products from the introduction of heavy and sophisticated equipment on
the rigs do lead to an impact these are little different from the impact associated with onshore recycling. As
discussed below, the latter have additional problems associated with disposal of contaminated water and
solids. An additional benefit from injection may be that it helps combat the subsidence which has been
observed at some production sites.
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5.1 Drilling fluid components

43. Drilling fluids are complex mixes often formulated to meet the demands of the well to be drilled.
They are normally classified by the base fluid used: water for water based muds; oil for oil based muds and
a number of different hydrocarbons for synthetic based muds. The base fluid is customised by the addition
of other chemicals. Among the most common constituent is a weighting agent to increase the density of the
mud in order to control the formation fluid pressure to prevent blowouts. Weighting agents include, inter
alia, barite and oxides of iron. Other chemicals are added including bentonite clays (to increase viscosity)
and organic polymers, thinners and inorganic chemicals. Appendix A contains information on typical mud
compositions with a summary of the main components described below.

5.1.1 Materials to increase density.

44. An important function of a drilling mud is the control of formation fluid pressure to prevent blowouts.
Any substance that is denser than water and that does not adversely affect the properties of the mud can be
added to raise the density. Various finely ground solid materials that have been used to successfully raise the
drilling mud density are shown in Table A.1, Appendix A.

5.1.2 Thinners: Mud-conditioning agents

45. Thinners are added to mud to reduce flow resistance and gel development. They also have a
number of other properties and so are often referred to as mud conditioning agents. Materials commonly
used as thinners for clay-water muds can be broadly classified as:

1. plant tannins

2. polyphosphates

3. lignitic materials

4. lignosulfates

46. Plant tannins, lignitic materials and lignosulfates are all organic compounds. Polyphosphates, such
as sodium acid pyrophosphate, sodium tetraphosphate and sodium hexametaphosphate, are inorganic
materials which are effective deflocculants and soften hard water by forming soluble complexes with
calcium and magnesium ions. Polyphosphates will revert to orthophosphate in water at about 100°C.

5.1.3 Oils

47. Diesel has been used for many years as a component of oil based muds. This practice has been
discontinued and replaced first by low toxicity oil (i.e. those with a hydrocarbon fraction containing <0,5%
aromatic compounds) and later with synthetic or pseudo oil based muds. Although low tox. oil and
synthetics are less toxic than diesel they still do not easily degrade in cuttings piles. Drill cuttings may be
contaminated by low tox and synthetic fluids as well as crude oil. Since 1997 the discharge limit of <1% by
weight of oil on cuttings has meant that there have been developments in technology to reduce the oil on
cuttings, but there will still be oil contained in injected materials.

5.2 Literature survey

48. No reports of studies of the fate of the components which might be included in cuttings related
material and the formation were found. There have, however, been a number of studies of the effects of drill
cuttings on marine sediments. These studies give an indication of the fate of some of the components of
drilling muds in the short term (<1 year). Because there are some similarities in environment between a
seabed cuttings pile and injected cuttings material, such as anaerobic conditions and a lack of macrofauna,
the results give an indication to the long term fate in a formation.
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49. Dow et al [ 19] carried out a study of the effect of drill cuttings on a model marine sediment system.
They used an onshore tank system to model marine sediment contaminated with water, diesel oil, and
paraffinic oil based cuttings from offshore drilling installations. The relative environmental impact of the
different cuttings was assessed over a 12-month period in terms of changes on hydrocarbon chemistry and
sediment microbiology. Dow et al found that the oxidation potentials (Eh) dropped rapidly in the first
5 months in the oil contaminated material with an average difference of 500 mV between oil contaminated
and an uncontaminated control. Sulfide levels were found to increase over the first 7 months (80 mg l-1

paraffin oil based cuttings) dropping to 10-20 mg l-1 after 12 months. They found that that there were many
more sulfate reducing bacteria in paraffin and diesel based cuttings than in water based cuttings, although
there was little change in the numbers over the last 5 months of the trial. The most active SRB populations
in paraffin based oil cuttings may reflect the reduced toxicity of cuttings lower in aromatic hydrocarbons.
Dow et al also recorded a more rapid loss of low molecular weight hydrocarbons from both paraffin based
and diesel-based cuttings than higher molecular weights. This group carried out a detailed study of the loss
of a number of poly-nuclear aromatic hydrocarbons (PNAH) many of which, such as benz(a)anthracene and
pyrene, appeared resistant to degradation over the 12 months of the trial. There was no study made of the
inorganic components.

50. Sanders and Tibbets [ 20] sampled drill cutting piles around platforms in the North Sea and concluded
that there is a greater degradation of n-alkanes and more SRB activity when low-toxicity oil had been used.
It is likely that the aromatic fractions of diesel suppress microbiological activity.

51. Leuterman et al have investigated the concentration, bioavailability and potential for bioaccumulation
of trace metals from barites [ 21]. This group analysed three barite samples for a number of trace metals,
Table 5.0-1.1. In Barite 2, zinc (66,4%) and lead (32,8%) were the major components of the contaminants,
whereas in Barite 3 lead (96,6%) was the major contaminant, representing approximately 0,02 g g-1 of the
original barite sample.

Table 5.0-1.1: Percentage contribution of each metal to the total metal loading of each barite
sample based on aqua regia digests [ 21].

Metal Percentage contribution of each metal to the total metal loading
of each barite sample (%)
Barite 1 Barite 2 Barite 3
Medical Grade
Barite (for
reference)

North Sea Barite
(barite with typical
metals concentrations)

High Metals
Containing Barite

Total metal loadings <1,9 �g g-1 18 070 �g g-1 22 733 �g g-1

Arsenic 1,7 0,2 <0,01
Cadmium 2,6 0,1 0,02
Chromium 50,3 0,03 0,02
Copper 13,1 0,3 0,1
Lead 10,5 32,8 96,6
Mercury 0,5 0,1 <0,01
Nickel 9,9 0,02 0,03
Zinc 11,5 66,4 3,2

5.3 Environmental Impact

5.3.1. Degradation
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52. A summary of the main factors influencing biodegradation of organic matter is listed below [ 22].

- Chemical structure of the base molecule

- Salinity

- Bacterial count

- Nutrients

- Oxygen

- Light

- Time of exposure

- pH

- Substance concentration

- Temperature

53. While light is not a factor in the degradation of components of cuttings disposed of in a fracture, the
impact of the other factors will vary significantly. As solutions move away from the disposal fracture the pH
will largely be governed by the natural pH of the water in the formation as this is frequently difficult to alter
due to the buffering capacity of the rock. Oxygen levels will fall over time so that the environment becomes
fairly rapidly (tens of days) anaerobic. Salinity and the concentration of other substances, both organic and
inorganic, will depend upon exchange reactions and adsorption on the rock. Temperature will be governed
by the depths of the formations into which the disposal fracture has propagated.

5.3.2 Hydrocarbons

54. Hydrocarbons are generally only degradable under aerobic conditions [ 22]. Once the hydrocarbon
has been injected into a formation, as part of a cuttings re-injection slurry, then the hydrocarbon will be
stable because the formation is an anoxic environment. There may be some degradation of the hydrocarbons
as a result of co-oxidation in the anoxic environment [ 23, 20]. Sanders and Tibbetts [ 20] summarised the
microbiological processes occurring in seabed sediments as shown in Figure 2. Similar processes would be
expected to occur in a formation after the cuttings injection, although the high initial populations of bacteria
that are present in seabed sediments would not be expected.
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Hydrocarbon input

Active aerobic oxidation
of aliphatics and aromatics
by hydrocarbon oxidising

bacteria.

Production of carbon
compounds.

Oxygen consumed.

Growth of anaerobic bacteria.
Production of further carbon

compounds.

Growth of SRB.
Production of sulfide.

Lowering of Eh.

Figure 2. Microbiological Processes Involved in the Degradation of Hydrocarbons in the
Seabed Sediment, from Reference [ 20].

5.3.3 Common inorganic chemicals

55. A large number of inorganic chemicals are used in drilling fluids, see Appendix A. While many of
these are readily water soluble and may be lost during the washing of drill cuttings, some will inevitably
contaminate the drill cuttings. Those that are the more readily water soluble will dissolve in water passing
through the placement fractures and move away into the formation with the water. Some inorganic ions will
exchange with ions in the rock in the formation while others will move at a similar speed to the formation
water. The re-dissolution of exchanged ions will depend upon a number of factors such as the mineralogy,
the pH and ionic strength of the solution and the temperature. There are computer programmes which will
model these processes, for example CHEMTARD [ 24], PHREEQE [ 25] and HARPHRQ [ 26], primarily
developed to predict the movement of radioactive pollutants in ground water, which have extensive
databases, for example CHEMVAL [ 27] and HATCHES [ 26].

56. Some of the inorganic chemicals, such as phosphates, will form the nutrient sources to support
biodegradation. Sulphate reducing bacteria will produce H2S from sulphates.

57. In their study on the bioavailability of trace metals from barites, Leuterman et al found that by 60 days
some of the trace metals had migrated into the surrounding sediment [ 21]. Similar processes would result in
the metals being released from barites in the fracture which would then move with the ground water. Heavy
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metals were found in cuttings waste by Hartley and Watson in their investigation of the cuttings pile around
the North West Hutton platform in the North Sea in 1992 [ 28], Figure 3.
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Figure 3. Metals from North West Hutton Drill Cuttings Pile[ 28].

5.3.4 Lost circulation materials

58. Lost circulation materials are unlikely to move intact far from the fracture in which they are initially
placed. They will, however, slowly biodegrade, with the natural materials such as nut shells and fibres
acting as a nutrient source and yielding H2S. There is also likely to be initial aerobic biodegradation yielding
small organic molecules which could act as chelating agents for inorganic species which will be present in
the injected material.

59. The degradation of the lost circulation materials is also likely to form colloids which are known to
assist the transport of inorganic species in groundwater [ 29, 30]. The colloids are polyelectrolyte
biopolymers and play a key role in the migration and retardation of heavy metals in the environment. Their
structural, chemical and physical properties depend on their origin, particularly on their precursor
substances and the conditions prevailing during their formation. Larger colloids will be retained by filtration
in the porous media, depending upon the pore size. The smaller colloids will tend to stabilise inorganic
colloids and may travel over long distances through groundwater or formation water movement.

60. Greenfield et al have reviewed the microbiological and chemical degradation of related organic
materials during storage of radioactive waste which in many cases occur under similar conditions to that
after CRI [ 31]. Greenfield et al concluded that a number of complexing agents will be generated, especially
from cellulose based materials, which may enhance the movement of heavy metals.

5.3.5 Drilling oils

61. The use of oils such as diesel and low tox. oil (<0,5% aromatic compounds) as components of drilling
fluids is currently in decline. They have been largely replaced by synthetic based fluids. Esters can be
hydrolysed in both acid and alkaline solutions. Acetals are stable in alkaline solution but rapidly hydrolyse
at low pH. In both cases smaller, water soluble molecules are formed, which will be more easily
biodegraded in the presence of oxygen. The smaller water soluble molecules are also likely to aid the
solution and transport of inorganic species. Biodegradation rates for all of these fluids in cuttings piles in
North Sea conditions are thought to be very low.
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62. There are significant quantities of diesel and low tox-oil contaminated drill cuttings around the base
of platforms in the North Sea, estimated to be close to 8000 m3 [ 22] or 50 000t [ 32]. This material could be
recovered, and processed for injection, as this would reduce the potential liability for industry or
government presented by an abandoned cuttings pile [ 32]. The aromatic content, in particular the PNAHs,
which will still be present in the cuttings on the seabed [ 19], even after many years, may inhibit the growth
of bacteria in the formation after CRI.

5.4 Mobility of components

63. The long term mobility of the many components injected during CRI can only be assessed with a
detailed knowledge of the formation and its mineralogy. Fractures may lead to a rapid movement of the
components, whereas interaction of the components with the rock minerals may lead to slow
chromatographic separation. Predictions of the mobility could be assessed using one of the number of
computer models which have been developed to predict the movement of organic and inorganic components
through rocks arising from storage of radioactive waste. The MIGRATION conferences [ 33] have included
a large number of papers on the movement of inorganic and organic compounds through the natural geologic
environment, discussion of computer models and associated data bases.

64. The possibility of drilling mud components, once they have been disposed of by surface disposal,
contaminating surface streams and ground water up to a considerable depth (>500 ft) has been recognised in
the USA [ 34]. As a consequence, restrictions have been placed on the use of oil based drilling muds and
chrome lignosulfonate. There is therefore the possibility of material placed at <500 ft by CRI contaminating
groundwater.

5.5 Summary of Environmental Impact

65. One of the major possible routes for the cuttings material reaching the surface environment is by
propagation of the placement fractures to the surface so that material, either in suspension or solution,
reaches the seabed. This has not happened for subsea CRI projects to date such as in Brent [ 11] or Sfax
(Tunisia) [ 10, 35]. Should the CRI material reach the seabed, studies which have been carried out to date
will give an indication as to the fate of the materials and resulting impact on the environment, for example
references [ 21] and [ 28].

66. Fractures could also propagate to adjacent formations with groundwater connectivity. This would
result in water soluble components from CRI appearing in groundwater. The majority of these components
would be inorganic species, which may include heavy metals, the propagation of which may be enhanced by
the presence of organic degradation products from the many organic components [ 36].

67. It should also be considered that fractures could propagate to adjacent wells. This may result in
contamination of produced water with the drilling mud components.

68. Propagating fractures may result in transport of H2S, resulting from biodegradation of the organic
components of the CRI mixture, reaching the seabed, adjacent wells or aquifers.

69. In the future there is also the possibility of drilling through the formation which has been used for
CRI, especially if long reach or deviated drilling had been used for the CRI well. This may not have an
environmental impact, but may unexpectedly produce quantities of H2S.
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5.6 Long Term/Geological Considerations

70. Drill cuttings reinjection in the Brent area is considered to have very low potential (<1 ppm) for
contamination of onshore aquifers. The following points lead to this conclusion:

� Most aquifers used for water supply in the UK are unconfined, and sea level is essentially the sink for
these aquifers. In some areas in other countries (e.g. Texas Gulf Coast), meteoric waters (i.e. rainwaters)
are known to penetrate to considerable depths, up to at least 2 km.

� The reservoir stratigraphy of the Brent area does not correlate to an onshore succession. Flow up faults is
a more likely route of escape for any fluids related to drill cuttings reinjection. At present, the North
Viking Graben may be regarded as a generally stable tectonic regime, and fracture propagation from
reservoir depths to the sea-bed is very unlikely in a time scale of 100 000 years. Such an event would
require a major change in regional tectonism, at rates far higher than those currently known to operate
from measurements of plate motion, mantle plume development etc.

� Chromatographic retention of sensitive substances is likely to be strong in intervening shales/clay rich
rocks.

� Over a 100 miles, a flow rate of 1 ft/day corresponds to a time of over 1400 years. For a one darcy rock
this requires a pressure differential of 0,04 psi/ft, or a total of 20 000 psi. Obviously such a pressure
differential is unrealistic - and takes no account of the huge volumes associated with such a flow. A more
realistic but still large figure of 200 psi differential extends the time period to more than 140 000 years,
even if continuous flow paths did exist and any pressure differential was in the ‘right’ direction.
Consequently contamination from flow is likely to be in the million years for the distances from Brent to
shore- if it occurs at all.

 
71. However, these observations are substantially restricted to the Brent scenario (distance and geological
correlation). For fields which are closer to shore, e.g. Beatrice, the risk factors would normally be expected
to be higher (though still very low). However, in the Beatrice specific case, although relative close to land
(~15 miles) with equivalent lithological outcrops, it is effectively cut off from fluid connectivity by
substantial faults. Also, the logic invoked for drill cuttings reinjection not affecting onshore aquifers would
be very different in a hydrothermally or tectonically active zone, though these do not currently exist to any
significant extent in the UKCS.

6. Environmental Aspects of Produced Water (re)-injection

72. Experience to date has shown that re-injecting produced water is an attractive, environmentally-sound
solution to water disposal with experience gained in the Gulf of Mexico, Alaska, the North Sea and onshore
worldwide. Overall the issues are similar to those for the (re)-injection of cuttings, the main difference is the
target strata. Cuttings are normally injected into reservoirs that are above the producing reservoir, whereas
produced water disposal is generally into the producing reservoir. There have been limited trials with
injection in shallower reservoirs but these have only had mixed success to date.

73. As disposal is generally into the producing reservoir, the opportunity for escape, either into aquifers
or to the surface is extremely limited. This, and other issues associated with produced water (re)-injection, is
currently the subject of an International Joint Industry Project (www.terratek.com).

74. A significant difference from the injection of cuttings is that injected water may be used to stimulate
production with the injected fluid being used to maintain reservoir pressure. This technique is used widely.
A reduction of oil into the sea may be achieved by this method. Some other differences between the
injection of water and cuttings are listed below:

� Produced water is normally injected into permeable horizons while cuttings are also injected
into clay/shale formations.
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� For the injection of cuttings it is necessary to fracture the target strata, while produced water
usually is injected into a permeable horizon without fracturing.

� So usually the formation above of the target strata of a cuttings injection is a permeable
horizon, for example sandstone, while the barrier of permeable strata, usually used for
produced water, are clays with low permeability.

� The consistency of cuttings slurry and produced water is different because cuttings slurry
contains grain-size solids while produced water is liquid.

� For the injection of produced water, in most cases it is not necessary to fracture the target
strata. In these cases fracturing should be avoided.

7. Alternative Means of Disposal

7.1 Overboard

75. Following OSPAR Decision 2000/3 the discharge of cuttings contaminated with SBM will effectively
be banned. Discharge of cuttings contaminated with water based muds will, however, remain an option for
the foreseeable future.

7.2 Skip and Ship to Shore

76. There has been a substantial growth in the skipping and shipping to shore of cuttings contaminated
with SBM. This trend will continue, with a likely similar growth in the disposal of OBM contaminated
cuttings. This option will probably remain the most common means of disposal for oil contaminated
cuttings. However, it is not without its problems. An estimate has been made of the relative energy balance
for this option versus injection and the results are summarised in the table below [37]. These numbers
include emissions from fuel usage in the transport of the cuttings. In some cases an argument might be made
that supply boats returning to shore may otherwise be empty and so no added emissions burden is generated
if these vessels are used to transport cuttings. There are other occasions, as when drilling extended reach
High Temperature and Pressure wells, when cuttings are produced at such a rate even in narrower hole
sections as to necessitate extra supply vessel sailings.

Table 0-1 Examples of Estimated total CO2 Emissions to Air from Different Disposal Options
for Contaminated Cuttings [37]

Process Emissions (kg/tonne)
Seabed deposition Insignificant
Cuttings reinjection 18
Soil cultivation 120
Land treatment with distillation 180
Land treatment with burning 475

77. It has been estimated that approximately 160 000 tonnes of OBM/SBM contaminated cuttings are
generated annually from oil and gas operations in the North Sea1. If there was a requirement to bring all this
material ashore then it is likely that this would put a severe strain on landfill sites and will also increase the
likelihood of a spill.

                                                
1 Estimate from SEBA. Though this is unconfirmed and subject to annual variation.
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7.2.1 Risks involved in transport (including on- and off-loading operations)

78. With all shipping/transport there are associated risks, including spillage and increased risk of
accidents resulting from increased transport frequency. The handling of drilling muds currently contributes
the largest number of reported spills from offshore drilling operations. The additional handling and
transportation required when the OSPAR Decision 00/03 comes into effect may lead to additional spills.

7.2.2 Transport to land vis a vis off-site transportation
79. Land site handling of drilled cuttings requires several operations, including rig site storage and
handling (bags or storage tanks), transport to onshore treatment site (sea transport with its associated risks)
and onshore treatment (burning and distillation). The CO2 emissions, and hence energy usage, from land site
handling is larger than the emission from injection (Table 6-1). This, and the additional risks from spillage
would tend to suggest that land site handling should only be used when there is a possibility of applying
some of the material from the treatment plant for re-use/re-cycling potential, or in increasing plant growth
through soil cultivation.

8. Off-Site (Re)-Injection

80. Where the cuttings are to be injected into a well at the platform, there would be essentially no
transportation of the cuttings. If the injection well is in a location remote from the well then the cuttings will
need to be transported to the injection site. The stages involved in this exercise include; storage, loading,
transport, off-loading, slurrification (which may also be done prior to loading) and injection.

81. The transportation of cuttings off-site for re-injection would incur no additional significant
environmental impacts from the current practice of transporting cuttings to shore for treatment and disposal.
There may be some additional risk from the increased number of transfer operations involved in off-site re-
injection but these will not be significant. As far as the transportation of cuttings itself, the risks in sending
cuttings to onshore or offshore destinations will be similar and emissions will relate directly to the distance
travelled.

9. Conclusions from simulation studies

82. In a study undertaken for the DTI, Cottrell et. al. (AEA Technology 16728207_v2.doc), 1999
presented results from simulation runs and presented the following conclusions based upon the study of a
typical well configuration in a UKCS Brent environment, with the primary window for the cuttings
reinjection being at 3,000 ft TVDSS at the top of the Hutton Sand Unit I, immediately beneath an
intermediate casing shoe.

� Layer permeability, or leak-off coefficient, plays a dominant role in determining whether a hydraulic
fracture containing re-injected cuttings is able to grow upwards through the Hutton Sand Units II, III and
IV.

� The presence of tight horizons above the injection window can prevent leak-off and can enable the
continued upwards growth into overlying horizons.

� Leak-off controls the growth of the fracture, not only at the onset, but also towards the end of the
injection.

� When the areal extent of the fracture within a permeable layer is sufficient so that leak-off approaches
the injection rate, the growth of the fracture through the permeable layer is arrested. A small increase in
the injected volume might then be accommodated by some downwards and outwards growth and some
opening of the fracture aperture within tighter layers.
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� Variations in elastic properties of the layers appear to play a much less dominant role in influencing the
vertical growth of the fractures, although increased stiffness leads to reduced fracture apertures. Injected
volumes might then be accommodated only by increased fracture length.

� In isolation, the occurrence of low in situ stresses in the upper horizons causes negligible differences in
fracture apertures, and has no influence on vertical and lateral extents of the fractures.

� Different slurry viscosities appear to result in only marginal differences in fracture growth.

� Fracture toughness appears to play only a minor role in controlling fracture growth.

� Where the horizons overlying the injection window are under conditions of relatively low stress whilst
exhibiting zero permeability and exceptionally high stiffnesses, fractures may grow close to surface.
However, such a scenario is highly unlikely.

� The capacity for a fracture to approach very close to surface was demonstrated in a number of scenarios,
but only under highly unlikely conditions.

� As one approaches close to surface the vertical or overburden stress may become the minimum stress s3,
such that any induced fracture will not propagate in a vertical plane but will turn horizontally. The
FRACPRO model is incapable of simulating this phenomena.

� Where the minimum stress s3 remains horizontal, a significant stress increase in the upper layers might
be sufficient to provide a stress barrier against propagation of the fracture. Such a stress increase is
characteristic of many soft shallow Tertiary shales and clays.

� Where vertical constraint occurs due to such a stress barrier, growth of the fracture might continue
outwards through less stressed formations.

� Different slurry injection rates appeared to result in no significant differences to the ultimate fracture
geometries

� No significant differences between fracture geometries were noted when slurry densities were varied.
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Appendix A

Typical Components of Drilling Fluids

Drilling fluid components

Materials to increase density
An important function of a drilling mud is the control of formation fluid pressure to prevent blowouts. Any
substance that is denser than water and that does not adversely affect the properties of the mud can be added
to raise the density. Various finely ground solid materials that have been used to successfully raise the
drilling mud density are shown in Table A-1.

Table A-1: Materials to increase mud density

Material Principal
component

Specific Gravity Hardness,
(Moh’s Scale)

Galena PbS 7,4-7,7 2,5-2,7
Haematite Fe2O3 4,8-5,3 5,5-6,5
Magnetite Fe3O4 5,0-5,2 5,5-6,5
Iron Oxide Fe2O3 4,7 6
Illmenite FeO, TiO2 4,5-5,1 5-6
Barite BaSO4 4,2-4,5 2,5-3,5
Siderite FeCO3 3,7-3,9 3,5-4
Celestite SrSO4 3,7-3,9 3-3,5
Dolomite CaCO3, MgCO3 2,8-2,9 3,5-4
Calcite CaCO3 2,6-2,8 3

Minor components in the various materials also need to be taken into account when considering the
environmental impact. For example, barite which is virtually insoluble in water (solubility product of 1,05 x
10-10 mols2/litre2), may contain calcium sulfate as gypsum or anhydrite. Sulfide minerals such as pyrite and
sphalerite, if present, may undergo oxidation with the formation of soluble iron salts. Some samples of the
mineral may contain trace impurities such as cadmium or mercury, see for example Table A-2. Iron oxides
may contain surfactants from processing the ore leading to wetting and foaming.

Clays
Bentonite increases the viscosity and decreases fluid loss of freshwater muds in its natural form, and, when
modified, performs the same function in water and oil based muds. Bentonite includes any member of the
montmorillonite group. The chemical formula can be expressed as 0,33 Na(Al1,07Mg.33O3)0,4 SiO2. H2O.

Attapulgus clay
Attapulgus clay is usually called attapulgite, which makes up 80-90% of the commercial product.
Montmorillonite and other clays plus quartz, calcite or dolomite make up the remainder. Attapulgite has a
fibrous texture. Chemically it is crystalline hydrated magnesium silicate, with partial replacement of
magnesium by aluminium, iron and other elements. Its crystalline structure means that it breaks up into
numerous needle-like particles upon shearing, with the degree of viscosity dependent on the particle size.
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Asbestos
Although clays are the major thickening agent for drilling fluids, asbestos has found limited applications.
Asbestos can be added to the water to improved the carrying capacity of the drilling fluid. The principle
component of commercial asbestos is chrysotile. The fibrous nature of chrysotile leads to the development
of ‘brush-heap’ structures when it is dispersed in water.

Organic polymers
Organic polymers that are used in drilling fluids may be broadly classified according to their origin and
composition. Some polymers such as starch occur naturally, other may be semi-synthetic, such as derivatives
of starches and gums. Finally there are the synthetic derivatives, such as the polyacrylates and ethylene
oxide polymers.

Starch
 Starch is used in drilling mud to reduce filtration. It is subject to fermentation by many micro-organisms
(yeast, moulds, bacteria), unless the mud is saturated with salt or the pH is about 12. To stop fermentation
biocides, such as paraformaldehyde, are often added. Starch is degraded by heat and agitation. With
continued circulation at temperatures of 200°F (93°C) and above, starch breaks down rapidly, leaving
shorter chain fragments in solution.
 
Guar Gum
 Guar gum, like starch, is a natural polymer, obtained from the endosperm of seeds of the guar plant. Guar
gum is a non-ionic, branched chain polysaccharide. It degrades rapidly above 150°F (65°C). Like starch it is
attacked by micro-organisms. Enzymes, normally present in the gum break down the gum with the formation
of acidic substances.
 
Xanthan Gum
 Xanthan is a water soluble polysaccharide produced by bacterial action (by xanthomonas campestris) on
carbohydrates. It is stable to 212°F (100°C). Xanthan gum is also used as a crosslinking agent with
chromium compounds.
 
Sodium Carboxymethylcellulose
 Sodium carboxymethylcellulose (CMC) is a water dispersible cellulosic polymer which does not ferment
under normal conditions of use. Thermal degradation of CMC is accelerated as temperature approaches
300°F (150°C). At higher pH values CMC is precipitated with calcium and magnesium ions.
 
Hydroxyethylcellulose
 Hydroxyethylcellulose (HEC) is prepared by reacting alkaline cellulose with ethylene oxide. It is typically
used up to 275°F (135°C).

 
Acrylic Polymers
 These are a group of synthetic polymers which have a broad range of composition and properties. They may
contain varying numbers of amide (-CONH2) and sodium carboxylate groups (-COONa).
 
Alkylene Oxide Polymers
Some surfactant-like polymers such as C6H5O(CH2CH2O)30H and nonylphenoxyethanol
(C9H19C6H4OCH2CH2OH) have been used with calcium surfactant muds and defoamants respectively.

Thinners: Mud-conditioning agents
Thinners are added to mud to reduce flow resistance and gel development. They also have a number of other
properties and so are often referred to as mud conditioning agents. Materials commonly used as thinners for
clay-water muds can be broadly classified as:

1. plant tannins

2. polyphosphates
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3. lignitic materials

4. lignosulfates

Plant tannins, lignitic materials and lignosulfates are all organic compounds. Polyphosphates, such as
sodium acid pyrophosphate, sodium tetraphosphate and sodium hexametaphosphate, are inorganic materials
which are effective deflocculants and soften hard water by forming soluble complexes with calcium and
magnesium ions. Polyphosphates will revert to orthophosphate in water at about 100°C.

Common inorganic chemicals

Table A. -2: Common Inorganic Chemicals Used in Drilling Fluids

Chemical name Formula CAS
number

Uses Typical
concentrations

Ammonium (acid)
phosphate

(NH4)2HPO4 7783-28-0 Used with polyanionic cellulose
polymer as a shale inhibitor

2 to 8 lb/bbl

Ammonium
bisulfite (as a
water solution)

NH4HSO3 10192-30-0 Oxygen scavenger to reduce
corrosion of iron

Ammonium
sulfite

(NH4)2SO3.H2O 10196-04-0 Oxygen scavenger to reduce
corrosion of iron

Calcium bromide CaBr2
CaBr2.6H2O

7789-41-5 To prepare dense salt solutions

Calcium chloride CaCl2
CaCl2.H2O
CaCl2.2H2O
CaCl2.6H2O

10043-52-4 Used in hole stabilising oil muds,
preparation of dense salt
solutions, lowering of freezing
point of water muds.

10 to 200 lb/bbl

Calcium
hydroxide

Ca(OH)2 1305-62-0 Used in lime muds, high calcium
ion muds, and for removal of
soluble carbonates.

0,5 to 20 lb/bbl

Calcium oxide CaO 1305-78-8 used in oil muds for the removal
of water used as slaked lime in
water muds.

Calcium sulfate CaSO4
CaSO4.2H2O

07778-18-9
10101-41-4

Slightly soluble in water, used as
a source of calcium ions in
gypsum muds.

2 to 8 lb/bbl

*Chromic
chloride

CrCl3.6H2O 10025-73-7 Used in cross linking xanthan
gum.

0,1 to 0,5 lb/bbl

*Chromium
potassium sulfate

CrK(SO4)2.12H2O 07788-99-0 Used in cross linking xanthan
gum.

Copper carbonate CuCO3.Cu(OH)2 12069-69-1 Used as a sulfide scavenger.
Magnesium
chloride

MgCl2.6H2O 7791-18-6 Added to brine used in drilling
carnalite to avoid hole
enlargement.

Magnesium
hydroxide

Mg(OH)2 01309-42-8 Used as a buffer, or stabiliser, in
acid soluble completion fluids in
conjunction with polymers.

Magnesium oxide MgO 1309-48-4 Used as a buffer, or stabiliser, in
acid soluble completion fluids in
conjunction with polymers.

0,5 to 2 lb/bbl

Potassium
carbonate

K2CO3.1½H2O 00584-08-7 Used as an alkalising agent in
potassium treated muds.

Potassium
chloride

KCl 7447-40-7 Primary source of potassium ions
for potassium polymer muds.

2 to 60 lb/bbl

Potassium
hydroxide

KOH 1310-58-3 Used to increase pH of potassium
treated muds and to solubilise
lignite

0,5 to 3 lb/bbl

Sodium NaHCO3 144-55-8 Used to counteract cement 0,5 to 5 lb/bbl
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Chemical name Formula CAS
number

Uses Typical
concentrations

bicarbonate contamination of bentonite water
muds.

Sodium carbonate NaCO3 497-19-8 Used to remove soluble calcium
salts from make up waters and
muds, plus some use in clay
benefication.

0,2 to 4 lb/bbl

Sodium chloride NaCl 7647-11-5 Used as produced or as prepared
brine in completion and
workover operations; to saturate
water before drilling rock salt; to
lower freezing point of mud; to
raise the density and act as a
bridging agent in saturated
solutions; and in hole stabilising
oil muds.

10 to 25 lb/bbl

Sodium chromate Na2CrO4
Na2CrO4.10H2O

07775-11-3 Used as a constituent of chrome
lignosulfate and chrome lignite
compositions for increased
thermal stability; inhibit
corrosion in salty muds.

0,1 to 2 lb/bbl

Sodium
dichromate

Na2Cr2O7.2H2O 10588-01-9 Used as a constituent of chrome
lignosulfate and chrome lignite
compositions for increased
thermal stability; inhibit
corrosion in salty muds. Note that
dichromate becomes chromate in
alkaline solutions.

0,1 to 2 lb/bbl

Sodium hydroxide NaOH 1310-73-2 Used in water to raise pH;
solubilise lignite, lignosulfonate
and tannin substances; to
neutralise hydrogen sulfide.

0,2 to 4 lb/bbl

Sodium
phosphates

7601-54-9 Defloculants for clays in fresh
water and thinners for mud

0,1 to 1 lb/bbl

Sodium sulfite Na2SO3 7757-83-7 Used as an oxygen scavenger. 0,05 to 0,1
lb/bbl

*Zinc bromide ZnBr 7699-45-8 Used to prepare dense salt
solutions

Basic zinc
compounds

ZnCO3
ZnO
Zn(OH)2

03486-35-9
01314-13-2
20427-58-1

All slightly soluble, hence do not
affect mud properties, but do
remove hydrogen sulfide as zinc
sulfide.

0,5 to 5 lb/bbl

*Zinc chloride ZnCl2 7646-85-7 Used to prepare dense salt
solutions

*Zinc chromate ZnCrO4 13530-65-9 Corrosion inhibitor 0,1 to 0,5 lb/bbl
*Zinc sulfate ZnSO4.H2O 7733-02-0 Used with sodium dichromate as

corrosion inhibitor
0,1 to 0,5 lb/bbl

* The use of
Chromium and
Zinc products is
strongly
discouraged in the
OSPAR area.
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Lost circulation materials
Many substances have been recommended for regaining circulation. A wide range of readily available,
inexpensive materials have been used. Some of which are listed below [ 18].

Calcium carbonate, woody celluloses, polymer cross linking agents, walnut shells, shredded
cellophane, flaked cellophane, groundnut shells, granular bentonite, shredded cane fibres,
biodegradable polysaccharide, vegetable fibres, thermoset rubber, vermiculite flakes.

These are usually used as mixtures, heterogeneous in shape, size and strength, as experience has shown that
these are more likely to effect a seal than a single size material. There are many other materials which been
used in the past such as coal, hog hair and asbestos [ 16].

Oils
Diesel was used for many years as a base oil for drilling muds. This practice was effectively banned by
PARCOM in 1984 and diesel was replaced with low-toxicity mineral oils (i.e. those with a low aromatic
content). Although these fluids are much less toxic than diesel, they still do not biodegrade readily and
PARCOM Decision 92/2 progressively reduced allowable discharges on cuttings towards an effective ban.
Synthetic drilling fluids were introduced to address this problem, but since they too have been found not to
biodegrade under field conditions, discharge of these is now tightly controlled by OSPAR Decision 2000/03.
Although there have been various developments in cuttings cleaning technology towards the <1,0% limit,
cuttings could be re-injected with a coating of either low-toxicity mineral oil or synthetic fluid.
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