OSPAR Commission 2001

Comprehensive Atmospheric Monitoring Programme

Observations from coastal stations in 1999

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the "OSPAR Convention") was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain.

La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l'Irlande, l'Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d'Irlande du Nord, la Suède et la Suisse et approuvée par l'Espagne et la Communauté européenne.

- © OSPAR Commission, 2001. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated.
- © Commission OSPAR, 2001. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l'Editeur, sous réserve que l'origine de l'extrait soit clairement mentionnée.

ISBN 0 946956 62 6

COMPREHENSIVE ATMOSPHERIC MONITORING PROGRAMME

Observations from Coastal Stations in 1999

OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic

Working Group on Inputs to the Marine Environment (INPUT)

NILU: OR 2/2001 REFERENCE: O-97146 DATE: JUNE 2001 ISBN: 82-425-1236-1

Observations from Coastal Stations in 1999

Kevin Barrett

Preface

This report was presented as a draft at the INPUT meeting in London 30 January–1 February 2001. Corrections received from the Parties between January and May 2001 were taken into account during the preparation of this corrected report.

This final version was delivered to the OSPAR secretariat in June 2001. A full list of national data originators can be found in Appendix D. At NILU the following have been responsible for CAMP data management: Jan Schaug, Anne-Gunn Hjellbrekke, Torunn Berg, Rita Larsen, Terje Krognes, and Kevin Barrett.

Kevin Barrett Scientist Norwegian Institute for Air Research

Contents

		Page
Pro	<u>eface</u>	3
<u>1</u>	<u>Introduction</u>	7
2	The Comprehensive Atmospheric Monitoring Programme	9
-	2.1 Components	
	2.2 Sampling	
	2.3 Station siting.	10
	2.4 Data reporting	10
<u>3</u>	N.E. Atlantic coastal atmospheric monitoring, 1999	12
4	Observed Atmospheric Quality	18
_	4.1 Nitrogen	
	4.2 Metals	
	4.3 Organic compounds	24
<u>5</u>	<u>Summary</u>	26
<u>Ap</u>	pendix A Observed monthly mean concentrations in precipitation	
	and in air at CAMP coastal monitoring stations, 1999	27
Ap	pendix B Principles for the Comprehensive Atmospheric Monitoring	
	Programme (CAMP)	52
A p	pendix C Description of NASA/Ames files	64
Ap	pendix D Data originators in each country	76
An	pendix E CAMP Data CD	80

Observations from Coastal Stations in 1999

1 Introduction

This report describes the observations reported by coastal monitoring stations across the OSPAR region (see Figure 1.1) under the Comprehensive Atmospheric Monitoring Programme (CAMP) for the year 1999. It was presented to the Working Group on Inputs to the Marine Environment, OSPAR, London, 30 January – 1 February, 2001, and is now released after this review.

The monitoring regime proposed by CAMP is summarised in chapter two. This section lists the components for which monitoring is suggested, the methods of sampling, and the recommended location of monitoring sites. In support of this summary, the Principles for the CAMP as described in the Summary Record for the Environmental Assessment and Monitoring Committee (ASMO) of OSPAR annual meeting at Spa, 1998, is given in Appendix B. For reference, a description of the NASA/Ames format in which form the reporting of data is requested is provided in Appendix C.

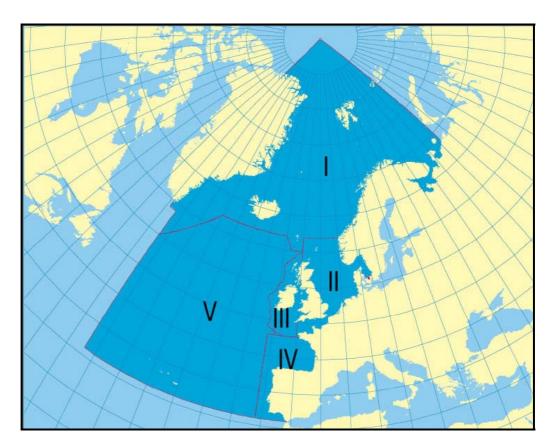


Figure 1.1: OSPAR maritime area and regions:
1: Arctic waters 2: Greater North Sea 3: Celtic Seas 4: Bay of
Biscay and Iberian Coast 5: Wider Atlantic. Source: www.ospar.org.

Chapter three summarises the monitoring activities which served CAMP in 1999, listing the stations reporting, their individual monitoring regimes, and the components they have reported. This is intended as an overview of the achievement of the implementation of CAMP recommendations. Actual observations are summarised as annual mean values in chapter four. The monthly values themselves from each station for 1999 are provided in Appendix A either as reported, or after aggregation to monthly values from shorter periods. Finally, Appendix D supplies a list of the current contact names and addresses for the data originators in each country, and for the CAMP Data Manager.

2 The Comprehensive Atmospheric Monitoring Programme

The Comprehensive Atmospheric Monitoring Programme forms one element within the wider Joint Assessment and Monitoring Programme of OSPAR. Amongst the intentions of CAMP are assessment of the atmospheric input of selected contaminants to the OSPAR maritime area and regions (see Figure 1.1). This is to be achieved via a monitoring regime with indicated substances, time resolution, methodologies, and sampling locations. Thus defined, the programme may assist in assessment of the quality status of the marine environment.

The components of interest to CAMP are divided into two groups, for measurement on a mandatory basis and for measurement on a voluntary basis. These are listed in table 2.1.

2.1 Components

Table 2.1: Components to be measured within CAMP.

	Mandatory	Voluntary
Precipitation	As, Cd, Cr, Cu, Pb, Hg, Ni, Zn, γ-HCH, NH ₄ ⁺ , NO ₃ ⁻	PCB 28,52,101,118,138,153,180 Phenanthrene, anthracene, flouranthene, pyrene, benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(ghi)perylene, indeno(1,2,3-cd)pyrene
Airborne	NO ₂ , HNO ₃ , NH ₃ , NH ₄ ^{+a} , NO ₃ ^{-a}	As, Cd, Cr, Cu, Pb, Hg, Ni, Zn, γ-HCH, PCB 28,52,101,118,138,153,180, Phenanthrene, anthracene, flouranthene, pyrene, benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(ghi)perylene, indeno(1,2,3-cd)pyrene, NO

a) total ammonium (NH₃ + NH₄⁺) and total nitrate (HNO₃ +NO₃⁻) is an alternative.

For quality assurance purposes the reporting of pH, electrical conductivity, and concentrations in precipitation of all major ions (Na⁺, K⁺, Mg²⁺, Ca²⁺, SO₄²⁻, Cl⁻, NH₄⁺, NO₃⁻, HCO₃⁻) is also encouraged.

2.2 Sampling

Precipitation sampling using wet-only samplers is recommended. Regular intercomparisons between wet-only and bulk samplers should be undertaken where bulk samplers are used instead. Account should be taken of any need to undertake summer cooling of samples.

For measuring precipitation amount practice has shown variable results in the efficiency of chemical samplers. According to design, problems such as poor capture, evaporation or snow blow-out can influence results. The use of a standard

rain-gauge parallel to the chemical sampling can assist in the calculation of deposition fluxes from concentrations and precipitation amounts.

Currently acceptable precipitation sampling frequencies are between one week and one month. The recommendation, however, is for one week sampling, possibly with combination of samples to longer periods (e.g. one month) prior to analysis. It is recommended to have two sampling periods for weeks which cross month boundaries, even if one of these is only a one-day sample. Achieving equal months in reported values greatly aids comparability between samples taken in different countries. Where weekly samples are simply assigned to the month in which most days fall noticeable temporal errors in data may, of course, be introduced. This is even more true where two-week samples are taken. The recommendation to change samples on the first day of the month in addition to the periodic routine is most strongly endorsed by NILU as CAMP Data Manager for all sample periods, and most especially when longer/two week sampling periods are used. As an aid to achieving consistency, it is recommended that samples are always changed at a fixed time, e.g. at 08.00 UTC on each Tuesday and on the first day of each month.

Amongst airborne components, a sampling period of 24 hr is recommended for heavy metals and for POP's, not less than 24 hr for nitrate and ammonia, with continuous monitoring of NO and NO₂ aggregated to hourly values.

2.3 Station siting

The Principles for CAMP call for each Contracting Party bordering the maritime area (excluding EU) to operate at least one monitoring station as part of CAMP. Where Parties border more than one region (see Figure 1.1) at least one station should be operating in each. These stations should be so-called *background stations*, i.e. not directly influenced by emission sources local to them. The intention of the programme is assessment of inputs to the marine environment. In accordance with this, the Principles explicitly call for stations to be located not more than 10 km from the coastline.

2.4 Data reporting

The monitoring data assembled through CAMP is stored on a relational database. This must account for considerable diversity in procedures across countries. In some cases several separate instruments operate side-by-side to serve different programmes. In others data is aggregated from the same instrument in different ways before submission to different programmes. On occasions different components are reported to different programmes from the same instrument. More than one person in some countries may have responsibilities in reporting data to programmes. Correct association of observed concentrations with observed precipitation amounts is vital. The potential for data duplication or mis-attribution is significant.

In consequence, all data reported to CAMP should be very carefully identified. As well as station and component identification, all data originators in participating countries are asked to assign unique names to the field instruments, to the methodologies, and to ensure programme labelling. Reporting is also requested in

a standardised format which seeks to ensure comparability and allow quality assurance. The NASA/Ames format of reporting is used for data files, being thusnamed after development by NASA. A description of the format is given in Appendix C.

Flagging of data is an important aid to quality management in use of the data. Data originators may be aware of unusual uncertainties associated with individual data elements. It is also important to be able to indicate such factors as concentrations being found to be below the analytical detection limit. Also in Appendix C is a list of the flags which may be used to mark any data element.

The time schedule for data reporting calls for initial submission of data by countries to the CAMP Data Manager by 31 August in the year subsequent to monitoring. Following initial reporting-back by the Data Manager in draft form, participants are requested to submit revised or corrected data by 30 October.

3 N.E. Atlantic coastal atmospheric monitoring, 1999

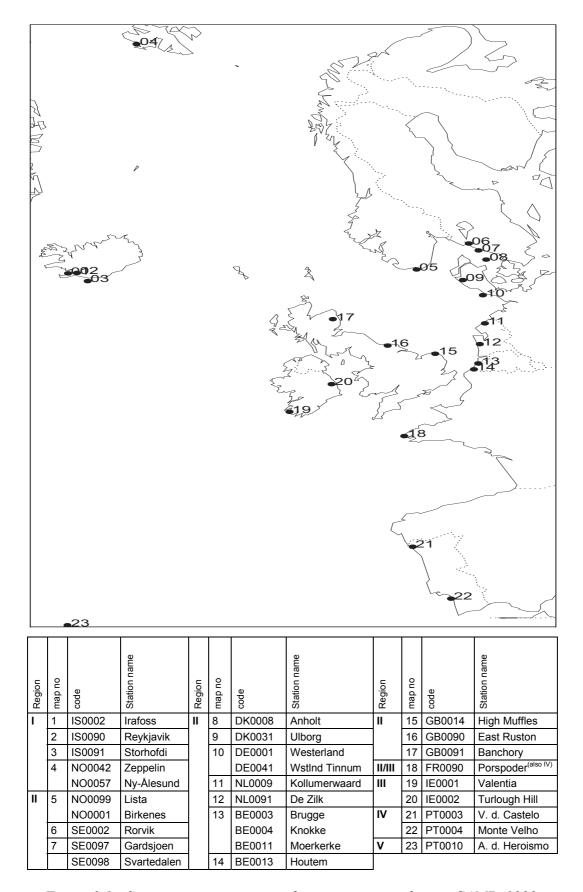


Figure 3.1: Stations reporting atmospheric monitoring data to CAMP, 1999.

Table 3.1: List of coastal stations reporting to CAMP for 1999.

Country	Station code	Station name	Latitude	Longitude	Altitude (m)	Distance from sea (km)
Belgium	BE0003R	Brugge	51.15N	3.12E	10	8
	BE0004R	Knokke	51.21N	3.20E	0	1
	BE0011R	Moerkerke	51.01N	2.35E	0	9
	BE0013R	Houtem	51.15N	3.21E	10	12
Denmark	DK0008R	Anholt	56.43N	11.31E	40	
	DK0031R	Ulborg	56.17N	8.26E	40	20
France	FR0090R	Porspoder	48.3N	4.46W	50	0.5
Germany	DE0001R	Westerland	55.36N	8.33E	5	0.55
,	DE0041R	Westerland-Tinnum				3
Iceland	IS0002R	Irafoss	64.06N	21.01W	66	26
	IS0090R	Reykjavik	64.08N	21.54W	52	1
	IS0091R	Storhofdi	63.24N	20.17W	118	0.5
Ireland	IE0001R	Valentia Observatory	51.56N	10.15W	9	0
	IE0002R	Turlough Hill	53.02N	6.24W	420	19
Netherlands	NL0009R	Kollumerwaard	53.2N	6.16E	1	7.5
	NL0091R	De Zilk	52.18N	4.31E	4	2.5
Norway	NO0042R	Zeppelin	78.54N	11.53E	474	2
	NO0057R	Ny Ålesund	78.54N	11.55E	8	0.3
	NO0099R	Lista	58.06N	6.34E	13	0.1
	NO0001R	Birkenes	58.23N	8.15E	190	20
Portugal	PT0003R	Viana do Castelo	41.42N	8.48W	16	3
-	PT0004R	Monte Velho	38.05N	8.48W	43	1.5
	PT0010R	Angra do Heroismo	38.4N	27.13W	74	1
Sweden	SE0002R	Rørvik	57.25N	11.56E	10	0.65
	SE0097R	Gårdsjøn	58.03N	12.01E	113	12
	SE0098R	Svartedalen	57.59N	12.06E	120	16
United Kingdom	GB0014R	High Muffles	54.20N	0.48W	265	22
	GB0090R	East Ruston	52.48N	1.28E	5	8
	GB0091R	Banchory	57.05N	02.32W	120	26.5

The CAMP principles call for monitoring stations to be located where possible within ten kilometres of the coast. By-and-large this objective is met, although observations from a few more distant sites have been reported for 1999.

In addition to that indicated in Table 3.2, national data originators have indicated that monitoring of nitrogen has been conducted by the United Kingdom, and monitoring of γ -HCH has been undertaken by Germany. These results are to be supplied to CAMP in the future as soon as national processing is completed.

Table 3.2: National submissions of precipitation data for 1999 – Mandatory List.

	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	γ-НСН	NH ₄	NO ₃
Belgium	•	•	•	•	•	•	•	•	•	•	•
Denmark	•	•	•	•	•		•	•		•	•
France	•	•	•	•	•		•	•		•	•
Germany	•	•	•	•	•	•	•	•		•	•
Iceland	•	•	•	•	•		•	•	•	•	•
Ireland	•	•	•	•	•	•	•	•	•	•	•
Netherlands	•	•	•	•	•	•	•	•	•	•	•
Norway	•	•	•	•	•	•	•	•	•	•	•
Portugal		•		•	•		•	•		•	•
Spain											
Sweden	•	•	•		•	•	•	•		•	•
United Kingdom	•	•	•	•	•		•	•		•	•

In general a number of countries found the reporting deadlines rather tight. Whilst some 1999 data was received at the database in the summer of 2000, the latest dataset received which is included in this report arrived on January 4th, 2001. No data was available from Spain before reporting, and data was still anticipated from a number of countries.

Table 3.3: Submissions of air concentration data for 1999 – Mandatory List.

	NO ₂	NO ₃	NH _x
Belgium	•		
Denmark	•	•	•
France		•	•
Germany	•	•	•
Iceland		•	
Ireland			
Netherlands		•	•
Norway	•	•	•
Portugal			
Spain			
Sweden	•	•	•
United Kingdom			

Table 3.4: Submissions of precipitation data for 1999 – Voluntary List.

	PCB's	Phenanthrene	Anthracene	Flouranthene	Pyrene	Benzo(α)anthracene	Chrysene	Benzo(α)pyrene	Benzo(x)perylene	Indeno(1,2,3-cd) pyrene	others
Belgium											pesticides
Denmark											
France											
Germany											
Iceland	• ¹⁰										pesticides
Ireland	•7										pesticides
Netherlands											
Norway											
Portugal											
Spain											
Sweden											
United Kingdom											

Number in superscript for PCB indicates number of individual congeners reported.

The recommended CAMP voluntary monitoring programme for components in precipitation has not been closely adhered to. It should be mentioned that monitoring of a number of these components has been undertaken by Germany, and that these results are anticipated to be released to CAMP in the near future.

Table 3.5: Submissions of air concentration data for 1999 – Voluntary List.

	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	γ-НСН	Other organics	NO
Belgium	•	•		•	•		•	•			•
Denmark	•	•	•	•	•		•	•			
France											
Germany	•	•		•	•		•				
Iceland	•	•	•	•	•	•	•	•	•	•	
Ireland						•					
Netherlands	•	•			•			•			•
Norway	•	•	•	•	•		•	•	•		
Portugal											
Spain											
Sweden											
United Kingdom	•	•	•	•	•		•	•			

Table 3.6: Sampling regime for components in precipitation.

Station code	Station name	Nutrients	Heavy Metals	Organics
BE0003R	Brugge	W1W		
BE0004R	Knokke		WM <i>plus</i> BM As,Cd,Pb,Zn	WM
DK0008R	Anholt		ВМ	
DK0031R	Ulborg		BM	
FR0090R	Porspoder	B2W	B2W	
DE0001Rb	Westerland-Tinnum	W1W(M)	W1W(M)	
IS0002R	Irafoss	BW	B1W	
IS0090R	Reykjavik	BW	B1W	
IS0091R	Storhofdi			B2W
IE0001R	Valentia Observatory		ВМ	
IE0002R	Turlough Hill	WD	ВМ	ВМ
NL0009R	Kollumerwaard	W4W	W4W	
NL0091R	De Zilk	W4W	W4W except WW Hg	B4W
NO0057R	Ny Alesund	BHW		
NO0099R	Lista	BD	BHW	
PT0003R	Viana do Castelo	BD	BD	
PT0004R	Monte Velho	BD	BD	
PT0010R	Angra do Heroismo	W1W	W1W	
SE0002R	Rørvik	WD	ВМ	
SE0097R	Gårdsjøn		ВМ	
SE0098R	Svartedalen	ВМ		
GB0014R	High Muffles	WD	ВМ	
GB0090R	East Ruston		ВМ	
GB0091R	Banchory		ВМ	

Code:

First letter: B = Bulk sampler; W = wet-only sampler

Subsequent letters: D = daily; 1W = 1 week samples; 2W = 2 week samples

4w = 4 week samples; M = Monthly samples

Letters in parenthesis: Reporting frequency

The sampling regimes across the stations do not always permit ready estimates of equivalent monthly observations. Notable is the procedure in the Netherlands with four-week sampling irrespective of calendar months, and the single two month sample at one UK site on one occasion. This produces 13 sampling periods per year with a somewhat uncertain attribution within calendar months. Several countries do not recommence their chosen monitoring period at the start of each month as recommended. A similar issue of comparability arises with the temporal resolution of reported data. Whilst some countries collect samples during a month and combine these prior to analysis, others analyse samples at a finer resolution. These may then be reported directly in 'raw' state, or may be aggregated by the host country to monthly values for reporting. There is potential for inconsistent treatment of data in consequence, notably with respect to flagged data.

Table 3.7: Sampling regime for airborne components.

Station code	Station name	Nitrogen components	Heavy Metals	Organics
BE0004R	Knokke		FD	
BE0011R	Moerkerke	MnH		
BE0013R	Houtem	MnH		
DK0008R	Anholt	FD	FD	
DK0031R	Ulborg	FD	FD	
DE0001R	Westerland	AD		
	Westerland-Tinnum	HVD	HVM	
IS0091R	Storhofdi	HV2W	HV2W	F2W
NL0009R	Kollumerwaard	FD NO3,NH4: MnH NO,NO2	FD	
NL0091R	De Zilk	FD NO3,NH4: DH NH3: MnH NO,NO2		
NO0001R	Birkenes	FD		
NO0042R	Zeppelin	FD	FHW	
NO0099R	Lista	FD	FHW	
SE0002R	Rørvik	FD HNO3+NO3,NHx: AD NO2		

Code:
First letters: Mn = Monitor; F = Filter; A = Absorbing solution; HV = High Volume sampler; D = Denuder Subsequent letters: H = hourly; D = daily; HW = half weekly, 2W = 2 weekly samples; M = monthly.

4 Observed Atmospheric Quality

In this chapter the annual average values of the mandatory and the voluntary list substances are provided as an overview of atmospheric conditions around the North East Atlantic in 1999. Observations of nitrogen and of arsenic, cadmium, copper and lead are plotted to provide a view of spatial distributions. The reported data in monthly format is provided in Appendix A.

In making the annual estimates all samples flagged 659, 658, 654, 653, 599, 499, 460, 459, 458, 260, 259, or 256 were excluded (see Appendix C for list of data flags). **NOTE**: The CAMP principles have been followed with respect to detection limits. Where flag 780 was given, this data value was employed. Where 781 was flagged, a value of half the detection limit was used.

4.1 Nitrogen

In Figures 4.1 and 4.2 the estimated depositions of nitrogen in precipitation across the CAMP region are shown. Values represent the sum of precipitation-weighted monthly mean concentrations multiplied by precipitation amount for those CAMP stations reporting nitrogen in precipitation. The summed annual values can be found in Table 4.1. Some of the tabulated data was not employed where this was apparently elevated in comparison to neighbouring stations or previous years. Preliminary evaluation of data at NILU led to withdrawal and resubmission of revisions through to January 2001. This new data is included here. Associated air concentration data is presented in Table 4.2 (mean annual values).

Table 4.1: Mean precipitation weighted concentrations of reduced and oxidised nitrogen in precipitation (mg $N \Gamma^{1}$), plus estimated annual wet depositions (mg $N m^{-2}$). Year: 1999.

		concen	trations		depos	sitions
		NH_4^{+}	NO ₃	precip	NH ₄ ⁺	NO ₃
		mg N /I	mg N /I	mm	mg N /m²	$mg N/m^2$
BE0003	Brugge	0.41	0.55	670	275	369
NL0009	Kollumerwaard	0.86	0.46	651	560	299
NL0091	De Zilk	0.54	0.49	951	514	466
DK0008	Anholt	0.42	0.53	798	335	423
DE0001	Westerland	0.48	0.51	812	390	414
SE0002	Rorvik	0.47	0.50	867	407	434
SE0098	Svartedalen	0.48	0.50	1405	674	703
NO0099	Lista	0.48	0.59	1273	611	751
NO0057	Ny Ålesund	0.21	0.19	227	48	43
IS0002	Irafoss	0.10	0.07	1381*	137*	100*
IS0090	Reykjavik	0.27	0.11	570*	151*	64*
IE0002	Turlough Hill	0.30	0.18	1744	521	320
GB0014	High Muffles	0.46	0.41	862	410	351
FR0090	Porspoder	0.22	0.28	1086	239	304
PT0003	V.d.Castelo	0.14	0.12	1496	209	180
PT0004	Monte Velho	0.24	0.16	560	134	90
PT0010	A.d.Heroismo	0.05	0.17	951	48	162

^{* 9} months only.

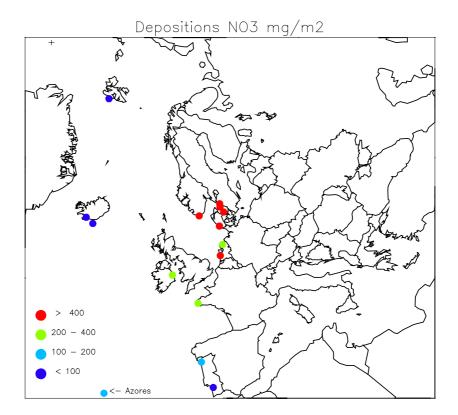


Figure 4.1: Estimated deposition of oxidised nitrogen in precipitation at coastal stations.

Units: $mg \ N \ m^{-2} \ yr^{-1}$. Year 1999.

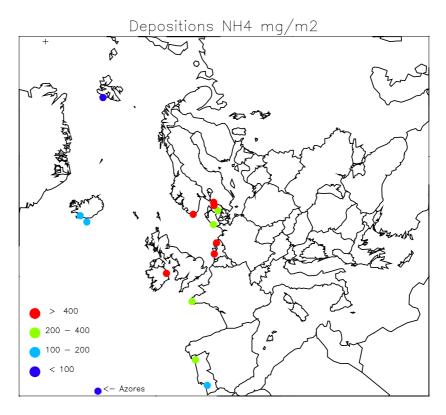


Figure 4.2: Estimated deposition of reduced nitrogen in precipitation at coastal stations.

Units: $mg \ N \ m^{-2} \ yr^{-1}$. Year 1999.

Table 4.2: Observed annual mean air concentrations of reduced and oxidised nitrogen, 1999.

Units:	$\mu g N m^{-3}$.
	F-0

		NH ₃	NH_4^{\dagger}	NH _x	NO ₃	HNO ₃ +NO ₃	NO	NO ₂
		μ g N/m³	μ g N/m³	μ g N/m³	μ g N/m³	μ g N/m³	μ g N/m ³	μ g N/m³
BE0011	Moerkerke						1.71	6.62
BE0013	Houtem						1.05	4.84
NL0009	Kollumerwaard		1.27		0.82		1.45	3.38
NL0091	De Zilk	1.57	0.96		0.59		5.35	
DK0008	Anholt	0.13		1.36		0.86		
DK0031	Ulborg			1.75	0.82			
DE0001	Westerland		0.36		0.40			2.02
SE0002	Rorvik			1.02		0.73		1.58
NO0001	Birkenes			0.51		0.20		0.52
NO0042	Zeppelin			0.19		0.03		
IS0091	Storhofdi				0.05			

4.2 Metals

Tables 4.3 and 4.4 lists the annual summary data for metal deposition in precipitation around N.E. Atlantic coasts. The spatial patterns are illustrated for arsenic, cadmium, copper and lead in Figures 4.3-4.6. Table 4.5 provides annual average concentrations in air.

Included in the precipitation tables for BE0004 are estimates on the basis of two samples collected simultaneously at the station using both bulk and wet-only sampling devices. The CAMP principles propose side-by-side comparisons where bulk samplers are used. However, comparison in this case is complicated through different laboratories and different methodologies being used for analysis of samples from each sampler. Samples from the bulk collector are analysed at a laboratory in Antwerp using AAS, whilst samples from the wet-only collector are analysed using Graphite furnace AAS at a laboratory in Ghent which commonly undertakes water quality analysis. Example estimates from these two monitoring and analytical regimes are given in Table 4.6. The difference in estimates can amount to a factor of ten. Monthly values for each of these can be found in Appendix A. Metal measurements are generally difficult due to the low concentrations and the contamination problem. A bulk sampler will collect dry as well as wet deposition, and the sample will be concentrated due to water evaporation during the warm season. In this case, however, the bulk results are the lowest and should be given most confidence. Although sampling method intercomparison is hampered by differences in analysis method, this case provides a good example of the value to be gained from precise labelling of field instruments, and informative reference labelling of laboratory methods. Different data sets such as these can thus be identified in the database. Following review at INPUT 2001, Belgium has decided to undertake CAMP analysis at the Antwerp laboratory in future.

The mercury concentrations in precipitation at BE00021 are too low compared with other measurements, and there is in general a need to review this data. The high concentrations of cupper at IS0090 may be due to local influence.

Metal data frequently are below the detection limits of analytical devices. When all or nearly all results are below the detection limit, the averages and depositions

in Table 4.3 and 4.4 have been given as upper limits only. This calculation may not be completely consistent in this report, and there is a need to work out better calculation procedures, preferably in co-operation with HELCOM and EMEP.

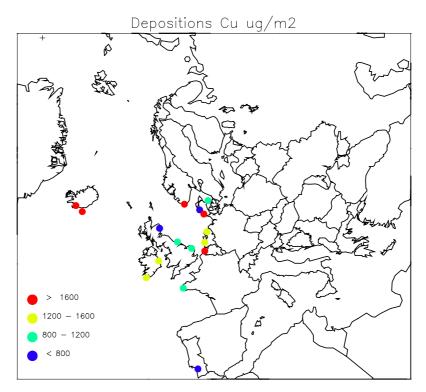


Figure 4.3: Estimated deposition of copper in precipitation, 1999. Units: $\mu g Cu m^{-2} yr^{-1}$.

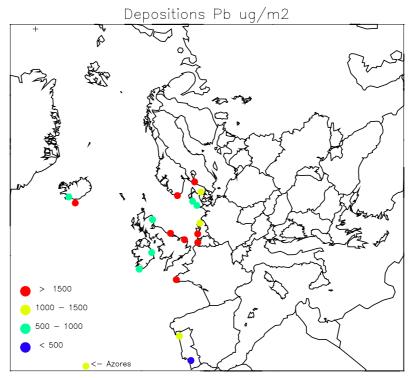


Figure 4.4: Estimated deposition of lead in precipitation, 1999. Units: $\mu g Pb m^{-2}yr^{-1}$.

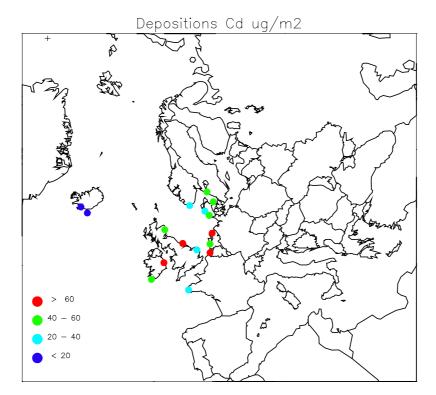


Figure 4.5: Estimated deposition of cadmium in precipitation, 1999. Units: $\mu g \ Cd \ m^{-2} yr^{-1}$.

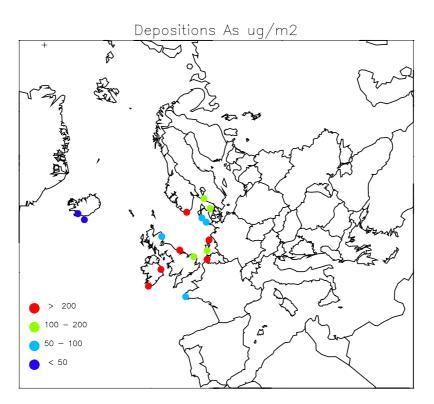


Figure 4.6: Estimated deposition of arsenic in precipitation, 1999. Units: $\mu g \ As \ m^{-2}yr^{-1}$.

Table 4.3: Mean precipitation weighted concentrations of metals in precipitation, 1999.

		As	Cd	Cr	Cu	Hg	Ni	Pb	Zn	precip.
		μ g /l	μ g /l	μ g/l	μ g /l	ng/l	μ g /l	μ g /l	μ g /l	mm
BE0004	Knokke	0.24	0.20	3.25	4.31	30.0	2.96	4.33	24.5	841
NL0009	Kollumerwaard	0.32^{1}	0.14	0.21 ¹	1.76		0.35	1.63	10.0	856
NL0091	De Zilk	0.22^{1}	0.05	0.21 ¹	1.48	14.4	0.37	2.67	6.2	876
DK0008	Anholt	0.19	0.05	0.21	1.19		0.32	1.59	12.8	798
DK0031	Ulborg	0.08	0.03	0.09	0.56		0.22	0.89	6.9	1063
DE0001	Westerland	0.11	0.06	0.14	2.20		0.92	1.22	16.7	812
SE0002	Rörvik					6.84				867
SE0097	Gårdsjön	0.10^{1}	0.05	0.24			0.21	1.63	11.6	1097
NO0099	Lista	0.22	0.03	0.20	1.73	9.82	0.36	1.60	7.4	1273
IS0002	Irafoss	0.04^{1}	0.01 ¹	0.12 ¹	1.39		0.24 ¹	1.37	12.1	1862*
IS0090	Reykjavik	0.05^{1}	0.01^{1}	0.38^{1}	2.29		0.92^{1}	0.74	10.9	793*
GB0014	High Muffles	0.24	0.07	0.20	1.37		0.32	2.42	5.1	866
GB0090	East Ruston	0.13	0.05	0.31	1.36		0.35	1.96	5.7	798
GB0091	Banchory	0.10	0.06	0.16	0.89		0.31 ¹	0.90	3.3	868
IE0001	Valentia	0.34^{1}	0.03^{1}	0.26^{1}	0.75	50.0 ¹	0.28^{1}	0.30^{1}	15.0	1776
IE0002	Turlough Hill	0.25^{1}	0.04^{1}	0.26^{1}	0.86	50.0 ¹	0.31 ¹	0.55	4.4	1744
FR0090	Porspoder	0.09	0.02	0.16	0.92		0.30	1.86	2.5	1086
PT0003	V.d.Castelo		0.43		2.56		0.94	0.75	14.8	1496
PT0004	Monte Velho		0.47		1.34		1.06	0.68	12.7	560
PT0010	A.d.Heroismo		0.65		1.94		2.25	1.05	60.2	951

¹ Many or all values BDL (see Appendix A). Calculations following CAMP principles. * Annual precipitation. 10 months monitoring plus 2 months Official Rain Gauge.

Table 4.4: Estimated annual wet depositions of priority metals, 1999.

		As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
		μ g/m ²	μ g /m²	μ g/ m^2	mg/m²	μ g/ m^2	mg/m²	mg/m²	mg/m²
BE0004	Knokke	202	168	2733	3.62	25.2	2.49	3.64	20.6
NL0009	Kollumerwaard	274 ¹	120	180 ¹	1.51		0.30	1.40	8.6
NL0091	De Zilk	193 ¹	44	184 ¹	1.30	12.6	0.32	2.34	5.4
DK0008	Anholt	152	40	168	0.95		0.26	1.27	10.2
DK0031	Ulborg	85	32	96	0.60		0.23	0.95	7.3
DE0001	Westerland	89	49	114	1.79		0.75	0.99	13.6
SE0002	Rörvik					5.9			
SE0097	Gårdsjön	110 ¹	55	263			0.23	1.79	12.7
NO0099	Lista	280	38	255	2.20	12.5	0.46	2.04	9.4
IS0002	Irafoss	48 ¹	19 ¹	223 ¹	2.57		0.45^{1}	2.53	22.5
IS0090	Reykjavik	40 ¹	8 ¹	301 ¹	1.86		0.55	0.61	8.7
GB0014	High Muffles	208	61	173	1.19		0.28	2.10	4.4
GB0090	East Ruston	104	40	247	1.09		0.28	1.56	4.6
GB0091	Banchory	87	52	139	0.77		<0.27	0.78	2.8
IE0001	Valentia	604 ¹	53 ¹	461 ¹	1.33	89 ¹	0.50^{1}	0.53 ¹	26.7
IE0002	Turlough Hill	436 ¹	70 ¹	453 ¹	1.50	89 ¹	0.54^{1}	0.96^{1}	7.6
FR0090	Porspoder	98	22	174	1.00		0.33	2.02	2.7
PT0003	V.d.Castelo		643		3.83		1.41	1.12	22.2
PT0004	Monte Velho		263		0.75		0.59	0.38	7.1
PT0010	A.d.Heroismo		609		1.83		2.14	0.99	56.7

¹ Many or all values BDL (see Appendix A). Calculations following CAMP principles.

		As ng/m ³	Cd ng/m ³	Cr ng/m³	Cu ng/m³	Hg pg/m³	Ni ng/m³	Pb ng/m³	Zn ng/m³
BE0004	Knokke		<2		24.0		12.9	23.3	36.8
NL0009	Kollumerwaard	0.68	0.21					10.56	31.7
DK0008	Anholt	0.41	0.1	0.39	1.00		1.54	4.77	9.46
DK0031	Ulborg	0.42	0.16	0.40	1.07		1.08	5.11	11.3
DE0001	Westerland	0.55	0.18		1.84		1.06	5.25	
NO0099	Lista	0.26	0.06	1.52	0.73		0.57	2.21	
NO0042	Zeppelin	0.08	0.02	0.13	0.28		0.14	0.50	1.39
IS0091	Storhofdi	0.08	0.21	7.18	1.15	0.53*	11.56	1.03	17.0
GB0014	High Muffles	0.68	0.13	0.16	4.86		0.64	9.86	43.1
GB0090	East Ruston	1.08	0.26	0.74	3.51		0.64	18.4	19.5
GB0091	Banchory	0.23	0.06	0.8	1.08		0.09	2.13	13.3

Table 4.5: Observed mean annual air concentrations of metals, 1999.

Table 4.6: Example comparison of estimates with different methods and laboratories.

	Arsenic μg /m²	Copper mg/m²	Lead mg /m²
Bulk-Antwerp	202	3.62	3.64
Wet-only-Ghent	2491	20.3	19.94

4.3 Organic compounds

Finally, in Tables 4.7–4.12 the annual average values for organic compounds reported to CAMP are listed. More results are anticipated in the near future from different countries. With restricted data it is more difficult to identify factors of relevance in interpreting data and developing monitoring efforts. Nevertheless quite strong differences in reported concentrations of some organic compounds between sites suggests either marked gradients, or differences in techniques which may be beneficial to evaluate. Concentrations of organic compounds like of metals frequently are below the detection limits. Comments given with respect to the treatment of metal data are also valid for the organics.

Table 4.7: Annual mean precipitation weighted concentrations of PCB's in precipitation, 1999.

						PC	B's					precip.
		28	31	52	101	105	118	138	153	156	180	
		ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	mm
IS0091	Storhofdi	0.092	0.091	0.029	0.019	0.004	0.022	0.025	0.025	0.003	0.014	1502 ²
IE0002	Turlough Hill			1.35 ¹	1.58 ¹		1.44 ¹	1.44 ¹	1.49^{1}		1.35 ¹	1743

¹ All values BDL. High detection limit. See Appendix A.

^{*} Only the particulate fraction, not total airborne elemental mercury.

² Official Rain Gauge data. Organics sampler measured 713 mm.

Table 4.8: Estimated annual wet depositions of PCB's, 1999.

						РС	B's				
		28	31	52	101	105	118	138	153	156	180
		ng/m²									
IS0091	Storhofdi	138	136	43	30	8	34	39	39	6	24
IE0002	Turlough Hill			2343	2753		2509	2597	2597		2353

Many values BDL. IE0002 Detection limit high. See Appendix A.

Table 4.9: Observed mean annual air concentrations of PCB's, 1999.

						РС	B's				
		28	31	52	101	105	118	138	153	156	180
		pg/m³									
IS0091	Storhofdi	3.52	1.74	0.85	0.27	0.03	0.1	0.04	0.07		0.05

Table 4.10: Annual mean precipitation weighted concentrations of organohalogens in precipitation, 1999.

		ү-НСН	α- HCH	β- HCH	aldrin	dieldrin	endrin	ppDDD	ppDDE	ppDDT	heptachl	нсв	precip
		ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	mm
BE0004	Knokke	21.	7.6		9.5	3.8	10.4	6.6	4.7	5.2	6.3		841
NL0091	De Zilk	14.09											949
IS0091	Storhofdi	0.12	0.24	0.01		0.03		0.020	0.028	0.003		0.02	1502
IE0002	Turlough Hill	5.21	1.4		1.35	2.1	2.15	1.35	1.35	1.35	1.4		1743
NO0099	Lista	3.7											

Many values BDL. Detection limits often high. See Appendix A.

Table 4.11: Estimated annual wet depositions of organohalogens, 1999.

		γ-HCH μg/m²	α-HCH μg/m²	β-HCH μg/m²	aldrin μg/m²	dieldrin μg/m²	endrin μg/m²	ppDDD μg/m²	ppDDE μg/m²	ppDDT μg/m²	heptachl μg/m²	HCB μg/m²
BE0004	Knokke	18	5		8	3	9	6	4	4	5	
NL0091	De Zilk	13										
IS0091	Storhofdi	0.2	0.4	<0.1		<0.1		<0.1	<0.1	<0.1		<0.1
IE0002	Turlough Hill	9			2	4	4	2	2	2		
NO0099	Lista	5										

Table 4.12: Observed mean annual air concentrations of organohalogens, 1999.

		γ-НСН	$\alpha\text{-HCH}$	β-НСН	aldrin	endrin	ppDDE	ppDDT	opDDT	нсв
		pg/m3	pg/m3	pg/m3	pg/m3	pg/m3	pg/m3	pg/m3	pg/m3	pg/m3
NO0099	Lista	36								
IS0091	Storhofdi	3.99	9.75	0.41	1.32	0.005	0.09	0.03	0.04	5.96

5 Summary

This report contains the results of monitoring undertaken for CAMP during 1999. The programme calls for Mandatory Monitoring of a range of nutrients, heavy metals and organic compounds in precipitation and air, and encourages participation in a Voluntary Monitoring of additional compounds. Monitoring should be conducted at monitoring stations located in proximity to the coast. Most stations do meet the ten kilometre objective. The furthest station from the coast is located some 26 kilometres inland.

Participation in the Mandatory programme for components in precipitation is reasonable. Some environmental toxins, e.g. γ -HCH and mercury receive less attention than other compounds. Monitoring of airborne compounds is at a similar level of compliance. Rather less attention is given to the Voluntary programme, notably the precipitation element in which organic substances feature. Some data is anticipated in the near future after national processing, but will still mean that observations are only reported from a single site.

Whilst equivalence in monitoring periods between countries is reasonable, there are some clear exceptions. A number of countries do recommence their monitoring periods at the start of each month thus allowing true monthly values to be reported or derived. However, a number do not do this, and some have long monitoring periods straddling months. This can make comparability less straightforward.

Reporting practices also vary between countries. Whilst some aggregate all samples in each month prior to analysis, others aggregate the results of several shorter samples, whilst others report raw short-period data. There is a reasonable prospect that data handling will be different as a consequence of this.

Metal and organic concentrations frequently are below the detection limits of analytical devices and in some cases detection limits are unusually high; this calls for strict rules when aggregating such data. Procedures may be worked out in cooperation with HELCOM and EMEP.

Differences in techniques and laboratories may be worth some evaluation. Example review of side-by-side samples analysed at different laboratories yielded tenfold differences in estimates. Similarly, there are quite clear differences in the estimates provided by different countries which may not only reflect differences in environmental occurrence.

Appendix A

Observed monthly mean concentrations in precipitation and in air at CAMP coastal monitoring stations, 1999

Appendix is divided by country, and thereafter by station. Each station heading contains observations of both precipitation and airborne concentrations during 1999. The following countries and stations which reported data for 1999 are listed.

Belgium BE0003, BE0004, BE0011, BE0013

Denmark DK0008, DK0031

France FR0090 Germany DE0001

Iceland IS0002, IS0090, IS0091

Ireland IE0001, IE0002 Netherlands NL0009, NL0091

Norway NO0042, NO0099, NO0001 Portugal PT0003, PT0004, PT0010 Sweden SE0002, SE0097, SE0098 United Kingdom UK0014, UK0090, UK0091

Belgium

BE0003R – Brugge Concentrations in precipitation

	From:	To:	prec.	NH₄-N	NO ₃ -N
			mm	mg/l	mg/l
January	4.01	29.01	39.6	0.21	0.65
February	29.01	26.02	42.0	0.43	0.82
March	26.02	2.04	54.0	0.55	0.99
April	2.04	30.04	52.7	0.24	1.02
May	30.04	29.05	12.8	0.78	1.02
June	29.05	2.07	80.3	0.91	0.68
July	2.07	30.07	11.1	1.16	1.16
August	30.07	3.09	92.3	0.51	0.45
September	3.09	1.10	74.4	0.63	0.42
October	1.10	29.10	100.7	0.02	0.25
November	29.10	28.11	18.2	0.63	0.41
December	28.11	3.01	111.1	0.11	0.24

BE0004R – Knokke Concentrations in precipitation

	Bulk Sampler													
	From:	To:	Precip.	As		Cd		Cu		Pb		Zn		
			mm	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	
January	12.01	10.02	37.3	0.24	780	0.88		2.0	780	5.65		663.1		
February	10.02	10.03	68.5	0.24	780	4.17		2.0	780	3.46		484.6		
March	10.03	7.04	35.4	0.24	780	0.17		2.0	780	4.65		339.9		
April	7.04	4.05	52.2	0.24	780	0.29	653	28.2	653	6.76	653	50.51	653	
May	4.05	2.06	37.7	0.24	780	0.30	654	321.2	654	8.37	654	84.48	654	
June	2.06	30.06	69.0	0.24	780	0.25		26.4		6.36		45.40		
July	30.06	28.07	22.8	0.24	780	0.03	780	9.5		2.06		7.04		
August	28.07	25.08	123.3	0.24	780	0.07		2.0	780	2.98		2.15		
September	25.08	22.09	27.8	0.24	780	0.11		2.0	780	4.81		127.5		
October	22.09	20.10	133.0		999		999		999		999			
November	20.1	19.11	39.5	0.24	780	0.08		2.0	780	5.20		18.68	654	
December	19.11	17.12	103.0	0.24	780	0.03	780	2.0	780	2.60	653	8.29		
December	17.12	14.01	86.9	0.24	780	0.05	654	2.0	780	1.43	654	2.15		

Concentrations in precipitation

	Wet-Only sampler																		
	From:							•											
		To:	Precip.	As		Cd		Cr		Cu		Pb		Hg		Ni		Zn	
			mm	μg/l	flag	ng/l	flag	μg/l	flag	μg/l	flag								
January	12.01	10.02	37.3	2.3	780	0.12	780	1.6		93.6		0.7	780	0.04		2.0	780	23.8	
February	10.02	10.03	68.5	2.6	780	0.12	780	4.4		1.9	780	27.9		0.04		3.7		40.8	
March	10.03	7.04	35.4	2.3	780	0.11		3.3		1.7	780	44.1		0.04		4.0		55.9	
April	7.04	4.05	52.2	2.6	780	0.16	653	1.1	653	1.9	780	0.7	780	0.04	653	2.0	780	34.0	653
Мау	4.05	2.06	37.7	2.5	780	0.45	654	4.4	654	4.4	654	0.7	780	0.03	654	1.9	780	76.0	654
June	2.06	30.06	69.0	2.5	780	0.26		2.9		3.8		28.6		0.03		1.9		33.3	
July	30.06	28.07	22.8	3.4	780	0.03		3.4	780	5.6	780	46.1		0.03	780	3.2	780	26.5	
August	28.07	25.08	123.3	3.4	780	0.12		3.4	780	5.6	780	17.1		0.03		3.2	780	10.6	
September	25.08	22.09	27.8	3.4	780	1.10		3.4	780	5.6	780	47.2		0.03	780	3.7		25.6	
October	22.09	22.10	133.0	3.3	780	0.11	780	3.4	780	10.8		13.7		0.03	780	3.1	780	7.1	
November	22.10	19.11	39.5	3.4	780	0.93	654	3.4	780	5.5	780	33.1	654	0.03	780	3.2	780	39.8	654
December	19.11	17.12	103.0	3.4	780	0.24		3.4	780	5.5	780	33.1		0.03	780	3.2	780	11.2	
December	17.12	14.01	86.9	1.3	780	0.70	780	1.6		9.4		25.0		0.01	780	11.0		53.0	

Concentrations in precipitation

	Wet Only sampler															
	From:	To:	Precip.	Aldrin	α- HCH	γ- HCH	dield	lrin	endrin	Heptac	hlor	pp-D	DD	ppD	DE	ppDDT
			mm	ng/I flag	ng/l _{flag}	ng/l flag	ng/l	flag	ng/l _{flag}	ng/l	flag	ng/l	flag	ng/l	flag	ng/l _{flag}
January	12.01	10.02	37.3	5 780	5 780	999	5	780	5 780	5	780	5	780	5	780	5 780
February	10.02	10.03	68.5	999	999	9	5	780	5 780	5	780	5	780	5	780	5 780
March	10.03	7.04	35.4	5 780	999	59	5	780	5 780	5	780	5	780	5	780	5 780
April	7.04	4.05	52.2	10 780	6 780	39 653	3	780	11 780	6	780	6	780	4	780	4 780
May	4.05	2.06	37.7	999	999	76 ₆₅₄	3	780	11 780	6	780	6	780	4	780	4 780
June	2.06	30.06	69.0	10 780	7 780	32	3	780	12 780	6	780	7	780	4	780	5 780
July	30.06	28.07	22.8	999	999	999		999	999		999		999		999	999
August	28.07	25.08	123.3	10 780	7 780	999	3	780	12 780	6	780	7	780	4	780	5 780
September	25.08	22.09	27.8	16 780	12 780	12	5	780	20 780	11	780	11	780	8	780	8 780
October	22.09	20.10	133.0	10 780	7 780	999	3	780	12 780	6	780	7	780	4	780	5 780
November	20.10	19.11	39.5	12 780	10 780	17 ₆₅₄	4	780	16 780	8	780	10	780	5	780	6 780
December	19.11	17.12	103.0	12 780	10 780	8 653	3	780	15 780	8	780	8	780	5	780	6 780
December	17.12	14.01	86.9	2 780	1 780	9	1	780	2 780	1	780	1	780	1	780	1 780

Concentrations in air

	From:	To:	Cd		Cu		Ni		Pb		Zn	
			ng/m³	flag								
January	1.01	1.02	2	781	22		13		22		41	
February	1.02	1.03	2	781	22		15		30		46	
March	1.03	1.04	2	781	26		16		29		65	
April	1.04	1.05	2	781	21		14		20	780	53	
May	1.05	1.06	2	781	20		15		20	780	29	
June	1.06	1.07	2	781	23		12		20	780	13	
July	1.07	1.08	2	781	22		12		20	780	18	
August	1.08	1.09	2	781	22		12		20	780	17	
September	1.09	1.10	2	781	22		10		28		56	
October	1.10	1.11	2	781	24		13		22		42	
November	1.11	1.12	2	781	26		13		28		45	
December	1.12	1.01	2	781	38		10		20	780	16	

BE0011 – Moerkerke Concentrations in air

	From:	To:	NO ₂ -N	NO-N
			μ g /m³	μ g /m³
January	1.01	1.02	7.91	1.87
February	1.02	1.03	7.61	2.80
March	1.03	1.04	8.83	2.33
April	1.04	1.05	6.09	0.93
May	1.05	1.06	6.39	1.40
June	1.06	1.07	4.57	0.47
July	1.07	1.08	5.17	0.93
August	1.08	1.09	5.48	0.93
September	1.09	1.10	6.39	1.40
October	1.10	1.11	7.30	2.80
November	1.11	1.12	7.61	3.27
December	1.12	1.01	6.09	1.40

BE0013 –Houtem Concentrations in air

	From:	To:	NO ₂ -N	NO-N
			μg/m³	μ g /m³
January	1.01	1.02	5.48	0.93
February	1.02	1.03	6.09	1.87
March	1.03	1.04	6.39	1.40
April	1.04	1.05	4.26	0.93
May	1.05	1.06	5.17	0.93
June	1.06	1.07	3.65	0.47
July	1.07	1.08	4.26	0.47
August	1.08	1.09	3.96	0.47
September	1.09	1.10	4.57	0.93
October	1.10	1.11	4.57	2.33
November	1.11	1.12	5.48	0.93
December	1.12	1.01	4.26	0.93

Denmark

DK0008 – Anholt Concentrations in precipitation

	From:	To:	Precip.	As		Cd		Cr		Cu		Pb		Ni		Zn	
			mm	μg/l	flag												
Month			HM														
January	1.01	31.01	51.9		999	0.05			999	1.42		1.65		0.33		6	
February	31.01	28.02	32.6		999	0.05		0.55		2.82		2.21		0.51		18	
March	28.02	31.03	70.4		999	0.07		0.27		1.75		3.28		0.46		9	
April	31.03	30.04	39.2	0.08		0.04		0.23			999	2.88		0.32		12	
May	30.04	31.05	48.3	0.15		0.07		0.40			999	3.93		0.54		26	
June	31.05	30.06	99.3	0.03		0.03		0.12			999	1.29			999	10	
July	30.06	31.07	45.2	0.33		0.09		0.32		3.29		2.73		0.49		21	
August	31.07	31.08	166.3	0.15		0.03		0.13		1.22		0.67		0.32		9	
September	31.08	30.09	58.0	0.76		0.09		0.41		2.05		2.67		0.47		13	
October	30.09	31.10	35.7	0.38		0.06		0.26		1.03		1.62		0.33		12	
November	31.10	30.11	7.0	0.82		0.17		0.43		2.21		3.80		1.03		38	
December	30.11	31.12	105.7	0.25		0.03		0.17		0.35		0.68		0.13		8	

	From:	To:	Precip.	NH₄-N	N	IO ₃ -N	
Month			mm	mg/l	flag	mg/l	flag
January	1.01	1.02	52.4	0.39		0.74	
February	1.02	1.03	32.7	0.38		0.69	
March	1.03	29.03	95.7	0.74		0.82	
April	29.03	30.04	63.3	0.49		0.51	
May	30.04	31.05	73.8	0.22		0.48	
June	31.05	30.06	66.0	0.24		0.38	
July	30.06	31.07	77.8	0.43		0.39	
August	31.07	31.08	99.7	0.18		0.18	
September	31.08	30.09	91.2	0.78		0.74	
October	30.09	31.10	17.7	0.60		0.90	
November	31.10	30.11	90.5	0.28		0.48	
December	30.11	31.12	37.1	0.24		0.45	

Concentrations in air

	From:	To:	As	Cd		Cr	Cu	Fe	Ni	Pb	Zn
			ng/m³	ng/m³	flag	ng/m³	ng/m³	ng/m³	ng/m³	ng/m³	ng/m³
January	1.01	31.01	0.49	0.10	780	0.28	1.16	38.3	1.40	7.77	10.8
February	31.01	28.02	0.26	0.10	780	0.55	0.62	23.1	1.44	1.64	6.1
March	28.02	31.03	0.75	0.12	780	0.35	1.52	59.7	2.12	6.56	13.5
April	31.03	30.04	0.44	0.11	780	0.35	1.31	77.0	2.35	5.10	11.5
May	30.04	31.05	0.30	0.16	780	0.32	1.70	118.0	1.67	3.82	10.0
June	31.05	30.06	0.25	0.07	780	0.46	0.41	42.8	1.10	3.16	6.2
July	30.06	31.07	0.25	0.09	780	0.38	0.29	85.6	2.01	2.56	6.2
August	31.07	31.08	0.25	0.18	780	0.49	-0.05	66.8	1.41	2.43	4.8
September	31.08	30.09	0.49	0.17	780	1.14	1.74	166.8	2.12	8.31	14.3
October	30.09	31.10	0.51				0.99	27.9	0.70	4.64	8.7
November	31.10	30.11	0.70	0.20	780	0.32	1.50	50.0	1.31	7.60	15.0
December	30.11	31.12	0.23	0.11	780	0.21	0.70	18.4	0.76	3.26	5.9

	From:	To:	NH ₃	NH ₃ +NH ₄	HNO ₃ +NO ₃
			μg N/m³	μ g N /m³	μ g N /m³
January	1.01	31.01	0.03	1.16	0.85
February	31.01	28.02	0.05	1.10	0.86
March	28.02	31.03	0.12	2.19	1.16
April	31.03	30.04	0.18	2.37	1.38
May	30.04	31.05	0.13	1.28	0.83
June	31.05	30.06	0.11	1.29	0.73
July	30.06	31.07	0.21	1.09	0.66
August	31.07	31.08	0.22	1.03	0.69
September	31.08	30.09	0.27	1.94	1.16
October	30.09	31.10	0.10	0.92	0.49
November	31.10	30.11	0.09	1.45	0.98
December	30.11	31.12	0.06	0.61	0.50

DK0031 – Ulborg Concentrations in precipitation

	From:	To:	precip	As		Cd		Cr		Cu		Pb		Ni		Zn	
			mm	μg/l	flag												
Month			HM														
January	1.01	31.01	79.6		999	0.09		0.16		1.28		1.18		0.35		6	
February	31.01	28.02	70.0		999	0.02		0		0		1.00		0.23		9	
March	28.02	31.03	92.1		999	0.04			999	0.92		1.34		0.27		6	
April	31.03	30.04	50.0	0.05		0.03		0.05			999	1.42		0.20		7	
May	30.04	31.05	24.6	0.17		0.06		0.41			999	2.40		0.58		11	
June	31.05	30.06	183.3	0.02		0.02		0.06			999	0.75		0.18		4	
July	30.06	31.07	56.3	0.14		0.05		0.17		0.94		1.05		0.26		17	
August	31.07	31.08	81.3	0.11		0.03		0.15		0.81		0.78		0.24		5	
September	31.08	30.09	120.5	0.14		0.03		0.13		0.58		0.96		0.16		5	
October	30.09	31.10	119.9	0.06		0.02		0.04		0.19		0.42		0.13		5	
November	31.10	30.11	56.7	0.11		0.04			999	0.59		0.85		0.26		15	
December	30.11	31.12	129.2	0.05		0.01		0.06		0.18		0.47		0.18		7	

	From:	To:	As ng/m³	Cd ng/m³	Cr ng/m³	Cu ng/m³	Fe ng/m³	Ni ng/m³	Pb ng/m³	Zn ng/m³
January	1.01	31.01	0.35	0.17	0.12	1.09	38.0	0.989	7.19	11.6
February	31.01	28.02	0.20	0.11	1.23	0.57	24.1	0.761	2.90	6.6
March	28.02	31.03	0.44	0.24	0.76	1.55	56.0	1.435	6.62	14.0
April	31.03	30.04	0.46	0.19	0.23	1.08	106.1	1.766	5.16	11.9
May	30.04	31.05	0.33	0.13	0.09	1.21	126.3	1.389	4.12	9.8
June	31.05	30.06	0.20	0.08	0.31	0.72	43.5	1.126	2.54	5.0
July	30.06	31.07	0.25	0.14	0.67	0.87	85.6	1.626	3.00	10.1
August	31.07	31.08	0.26	0.05	0.32	0.57	71.0	0.697	2.20	6.0
September	31.08	30.09	0.52	0.25	0.62	1.75	144.5	1.216	6.66	13.9
October	30.09	31.10	0.40	0.23	0.28	1.19	42.8	0.547	5.19	10.2
November	31.10	30.11	0.44	0.14	0.29	1.40	49.7	0.91	5.88	12.5
December	30.11	31.12	1.24	0.14	-0.02	0.79	19.5	0.44	9.45	23.5

			NH₃+NH₄ μg N/m³	HNO ₃ +NO ₃ μg N/m ³
January	1.01	31.01	1.29	0.80
February	31.01	28.02	1.04	0.74
March	28.02	31.03	2.81	1.56
April	31.03	30.04	2.94	1.34
May	30.04	31.05	2.37	0.85
June	31.05	30.06	1.09	0.52
July	30.06	31.07	1.71	0.61
August	31.07	31.08	1.51	0.50
September	31.08	30.09	2.31	0.90
October	30.09	31.10	1.33	0.54
November	31.10	30.11	1.78	0.94
December	30.11	31.12	0.70	0.39

France

FR0090R – Porspoder Concentrations in precipitation

	Precip.	As	Cd	Cr	Cu	Pb	Ni	Zn	NH₄-N	NO ₃ -N
	mm	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	mg/l	mg/l
January	157.0	0.26	0.02	0.17	0.83	1.13	0.39	1.73	0.26	0.18
February	67.0	0.17	0.01	0.13	0.92	1.02	0.31	1.78	0.23	0.35
March	47.0	0.16	0.02	0.19	1.49	1.55	0.36	3.11	0.14	0.51
April	109.0	0.05	0.01	0.10	0.49	0.57	0.26	1.57	0.02	0.14
May	38.0	0.11	0.07	0.19	3.03	10.71	0.55	15.68	2.09	1.01
June	24.0	0.14	0.03	0.27	1.87	3.57	0.73	4.90	0.13	0.48
July	9.0	0.43	0.04	0.30	1.60	3.00	0.70	5.90	0.27	0.99
August	155.0	0.04	0.02	0.11	0.98	1.63	0.32	1.70	0.29	0.24
September	126.0	0.02	0.01	0.09	0.52	1.00	0.23	1.22	0.03	0.06
October	87.0	0.04	0.03	0.06	0.90	0.66	0.46	1.99	0.27	0.14
November	55.5	0.10	0.04	0.43	1.05	4.66	0.32	5.85	0.32	1.18
December	213.0	0.03	0.01	0.19	0.74	2.02	0.10	1.38	0.02	0.17

Germany

DE0001R – Westerland-1 Concentrations in air

	From:	To:	NO ₂ -N μg/m ³	flag
January	1.01	1.02	3.4	
February	1.02	1.03	2.5	
March	1.03	1.04	2.9	
april	1.04	1.05	2.1	
May	1.05	1.06	1.6	
June	1.06	1.07	1.3	
July	1.07	1.08	1.4	
August	1.08	1.09		999
September	1.09	1.10	2.0	
October	1.10	1.11	1.9	
November	1.11	1.12	2.9	
December	1.12	1.01	2.2	

DE0001Rb – Westerland-2 Tinnum Concentrations in precipitation

	From:	To:	Precip.	As		Cd	Cr	Cu	Pb	Hg	Ni	Zn
			mm	μg/l	flag	μg/l	_{flag} µg/l	flag µg/l	_{flag} µg/l	flag ng/l	_{flag} µg/l	_{flag} µg/l _{flag}
January	1.01	1.02	74.0	0.11		0.07	0.18	1.35	1.98	15.9	1.14	24.2
February	1.02	1.03	30.3	0.19		0.11	0.21	2.21	1.59	13.1	0.92	23.3
March	1.03	1.04	43.9	80.0		0.07	0.12	1.10	1.02	6.7	0.63	20.8
April	1.04	1.05	70.2	0.11		0.06	0.10	3.07	1.72	13.4	1.39	21.9
May	1.05	1.06	13.2	0.17		0.08	0.19	3.31	2.22	9.3	1.53	34.1
June	1.06	1.07	56.9	0.07		0.05	0.17	1.55	0.87	35.3	0.67	19.9
July	1.07	1.08	101.1	0.11		0.07	0.13	1.43	1.37		999 1.12	13.5
August	1.08	1.09	66.5	80.0		0.05	0.11	1.91	0.63	10.6	1.23	20.9
September	1.09	1.10	85.6	0.10		0.05	0.15	1.19	1.17	7.1	0.52	17.6
October	1.10	1.11	154.6	0.12		0.04	0.14	2.28	1.10	7.2	0.46	9.1
November	1.11	1.12	65.0	0.16		0.09	0.15	3.62	1.02	6.4	1.48	12.1
December	1.12	1.01	50.5		699	0.03		699 5.23	0.65	6.7		699 11.2

	From:	To:	precip	NH₄-N	NO ₃ -N	
			mm	mg N/l	flag mgN/l	flag
January	1.01	1.02	74.0	0.43	0.76	
February	1.02	1.03	30.3	0.28	0.53	
March	1.03	1.04	43.9	0.67	0.58	
April	1.04	1.05	70.2	0.75	0.94	
May	1.05	1.06	13.2	0.87	0.83	
June	1.06	1.07	56.9	0.47	0.48	
July	1.07	1.08	101.1	0.69	0.59	
August	1.08	1.09	66.5	0.48	0.41	
September	1.09	1.10	85.6	0.36	0.44	
October	1.10	1.11	154.6	0.14	0.34	
November	1.11	1.12	65.0	0.67	0.37	
December	1.12	1.01	50.5	0.67	0.29	

	From:	To:	As	Cd	Cu	Ni	Pb	NO ₃ -N	NH ₄ -N
			ng/m³	flag ng/m³ f	_{lag} ng/m ³	flag ng/m ³	flag ng/m ³	flag μg/m³ flag	μg/m³ _{flag}
January	1.01	1.02	0.46	0.36	1.92	1.30	8.45	0.65	0.25
February	1.02	1.03	0.24	0.27	1.15	0.57	4.79	0.49	0.26
March	1.03	1.04	0.70	0.21	2.55	1.62	7.83	0.41	0.73
April	1.04	1.05	0.59	0.16	1.75	1.58	5.92	0.52	0.62
May	1.05	1.06	0.33	0.10	1.36	1.33	4.17	0.51	0.23
June	1.06	1.07	0.17	0.04	0.64	0.55	2.26	0.31	0.13
July	1.07	1.08	0.30	0.07	1.16	1.29	2.92	0.26	0.19
August	1.08	1.09	0.34	0.08	1.39	1.07	3.04	0.20	0.14
September	1.09	1.10	0.96	0.35	2.82	1.55	9.61	0.40	0.82
October	1.10	1.11	0.56	0.20	1.49	0.46	4.81	0.35	0.28
November	1.11	1.12	0.57	0.16	2.20	1.01	5.73	0.45	0.42
December	1.12	1.01	1.34	0.12	3.60	0.36	3.43	0.28	0.30

Iceland

IS0002 - Irafoss

Concentrations in precipitation

Concenti	ations	,	91 001P	tution													
	From:	To:	Precip.	As		Cd		Cr		Cu		Pb		Ni		Zn	
			mm	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag
Month			НМ														
January	1.01	1.02															
February	1.02	1.03															
March	1.03	1.04															
April	1.04	1.05															
May	1.05	1.06	270.6	0.06		0.01	781	0.05	781	2.9	3	4.03	3	0.33		7.87	7
June	1.06	1.07	72.3	0.06		0.01	781	0.06	781	1.1	7	1.19)	0.10	1	7.2	1
July	1.07	1.08	126.4	0.03	781	0.01	781	0.06	781	0.8	1	0.55	5	0.21		5.10	0
August	1.08	1.09	112.9	0.03	781	0.01	781	0.05	781	1.2	0	0.74	ļ	0.36	;	5.26	6
September	1.09	1.10	122.0	0.03	781	0.02		0.05	781	1.0	6	0.73	3	0.15	;	6.09	9
October	1.10	1.11	229.3	0.03	781	0.01		0.40	1	1.1	1	0.43	3	0.40	1	12.0	0
November	1.11	1.12	154.9	0.05		0.01	781	0.05	781	0.5	5	0.43	3	0.05	,	6.84	4
December	1.12	1.01	112.7	0.03	781	0.02		0.05	781	0.7	7	0.57	7	0.06	i	41.9	9

	From:	To:	Precip.		Fe		Al		٧		Mn		Precip.	NH ₄ -N		NO ₃ -N	
Month			mm HM	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	mm	mg/l	flag	mg/l	flag
January	1.01	1.02															
February	1.02	1.03															
March	1.03	1.04															
April	1.04	1.05															
May	1.05	1.06	270.6		38.6		43.5		0.14		1.65		277.4	0.17		0.09)
June	1.06	1.07	72.3		106		98.8		0.27		3.73		177.4	0.15		0.07	,
July	1.07	1.08	126.4		319		193		0.58		7.05		148.5	0.07		0.09)
August	1.08	1.09	112.9		77.8		81.2		0.22		2.86		110.2	0.06		0.09)
September	1.09	1.10	122.0		84.5		65.2		0.23		1.89		102.3	0.02		0.05	5
October	1.10	1.11	229.3		395		211		0.83		7.07		209.8	0.01		0.04	
November	1.11	1.12	154.9		31.3		52.0		0.23		2.71		224.7	0.14		0.10)
December	1.12	1.01	112.7		39.1		25.8		0.15		0.92		110.3	0.13		0.03	3

IS0090 – Reykjavik Concentrations in precipitation

Concentia	1110113	יא יייי	Cipit	ation													
	From:	To:	precip	As		Cd		Cr		Cu		Pb		Ni		Zn	
			mm	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag
Month			HM														
January	1.01	1.02															
February	1.02	1.03															
March	1.03	1.04	14.8	0.12		0.02		0.76		6.83	3	0.85	;	2.68	}	18.3	3
April	1.04	1.05	28.4	0.15		0.02		1.18		6.71		1.45	;	9.09)	23.0	0
May	1.05	1.06	95.3	0.06		0.01		0.30		2.41		0.78	;	1.15	i	7.66	ô
June	1.06	1.07	73.3	0.10		0.01	781	0.05	781	1.25	5	0.62	:	0.47	•	10.	1
July	1.07	1.08	66.1	0.03	781	0.01	781	0.28		1.06	6	0.59)	0.34		5.76	ô
August	1.08	1.09	63.8	0.04	781	0.01		0.12		1.43	3	0.81		0.37	,	7.2	7
September	1.09	1,10	66.5	0.03	781	0.01	781	0.28		1.74	ļ	0.61		0.13	3	5.64	4
October	1,10	1.11	104.4	0.03	781	0.01	781	0.45		1.46	6	0.32		0.31		23.5	5
November	1.11	1.12	55.1	0.05		0.01		0.73		3.16	6	0.68		0.32	2	9.79	9
December	1.12	1.01	36.9	0.03	781	0.01		0.61		4.64	ļ	1.91		0.21		2.89	9

	From:	To:	Precip		Fe		ΑI		٧		Mn		Precip.	NH ₄ -N		NO ₃ -N	
			mm fl	ag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	mm	mg/l	flag	mg/l	flag
Month			HM										N				
January	1.01	1.02															
February	1.02	1.03															
March	1.03	1.04	14.8		695		588		0.50		16.9		8.6	1.27		0.39)
April	1.04	1.05	28.4		677		647		0.65		16.89		9.4	1.03		0.19)
May	1.05	1.06	95.3		303		249		0.53		8.66		62.7	0.35		0.15	;
June	1.06	1.07	73.3		42.8		62.4		0.10		2.04		67.3	0.31		0.17	
July	1.07	1.08	66.1		108		81.4		0.33		3.63		71.5	0.11		0.08	;
August	1.08	1.09	63.8		102		120		0.30		2.50		67.0	0.24		0.14	
September	1.09	1,10	66.5		142		172		0.50		2.64		68.6	0.31		0.11	
October	1,10	1.11	104.4		91.2		98.6		0.37		1.78		106.5	0.10		0.05	;
November	1.11	1.12	55.1		290		286		0.89		7.40		59.7	0.18		0.12	:
December	1.12	1.01	36.9		160		216		0.59		3.03		38.6	0.52		0.09	1

IS0091R – Storhofdi Concentrations in precipitation

	prec.	а-НСН	b-HCH	g-HCH	dieldrin	cis_CD	нсв	op_DDT p	p_DDT	pp_DDE p	p_DDD t	rans_NO
	mm	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l
January	74.8	0.204	0.019	0.042	0.056	0.014	0.018	0.016	0.032	0.013	0.030	0.010
February	52.3	0.221	0.006	0.001	0.052	0.009	0.011	0.011	0.024	0.012	0.003	0.004
March	24.0	0.300	0.000	0.025	0.058	0.005	0.021	0.000	0.034	0.004	0.006	0.000
April	48.6	0.192	0.000	0.082	0.048	0.012	0.014	0.000	0.003	0.003	0.000	0.002
May	49.9	0.199	0.000	0.266	0.056	0.000	0.031	0.000	0.094	0.282	0.141	0.000
June	74.2	0.189	0.000	0.115	0.030	0.005	0.011	0.000	0.000	0.016	0.015	0.003
July	47.1	0.228	0.003	0.222	0.001	0.004	0.013	0.001	0.002	0.005	0.001	0.002
August	59.5	0.292	0.003	0.134	0.003	0.003	0.013	0.001	0.001	0.003	0.002	0.001
September	77.7	0.325	0.011	0.172	0.001	0.003	0.016	0.000	0.001	0.002	0.003	0.001
October	76.5	0.242	0.007	0.161	0.010	0.004	0.017	0.000	0.002	0.003	0.009	0.003
November	61.3	0.314	0.010	0.114	0.039	0.004	0.029	0.000	0.000	0.002	0.008	0.003
December	62.3	0.223	0.003	0.076	0.045	0.014	0.017	0.001	0.006	0.008	0.012	0.004

All BDC except a-HCH, HCB, g-HCH from May, ppDDT until April, dieldrin until July.

		,	, g		P P	,					
	prec.	PCB_101	PCB_105	PCB_118	PCB_138	PCB_153	PCB_156	PCB_180	PCB_28	PCB_31	PCB_52
	mm	ng/l	ng/l	ng/l	ng/l						
January	74.8	0.054	0.000	0.053	0.079	0.073	0.006	0.043	0.051	0.053	0.030
February	52.3	0.019	0.003	0.026	0.017	0.017	0.003	0.008	0.122	0.127	0.054
March	24.0	0.029	0.000	0.038	0.033	0.033	0.000	0.025	0.069	0.110	0.042
April	48.6	0.026	0.000	0.034	0.024	0.024	0.000	0.008	0.079	0.102	0.051
May	49.9	0.043	0.000	0.065	0.069	0.088	0.002	0.031	0.079	0.080	0.038
June	74.2	0.009	0.000	0.011	0.003	0.005	0.001	0.003	0.054	0.059	0.013
July	47.1	0.010	0.008	0.010	0.020	0.018	0.001	0.018	0.033	0.029	0.015
August	59.5	0.019	0.009	0.018	0.032	0.027	0.001	0.024	0.136	0.131	0.018
September	77.7	0.010	0.003	0.004	0.007	0.008	0.000	0.002	0.098	0.093	0.011
October	76.5	0.002	0.004	0.003	0.000	0.001	0.003	0.001	0.026	0.027	0.004
November	61.3	0.004	0.003	0.009	0.018	0.017	0.003	0.016	0.101	0.094	0.007
December	62.3	0.016	0.014	0.017	0.012	0.012	0.009	0.005	0.097	0.084	0.010

Much BDC except 101-138 until September.

	FROM:	TO:	Pb	Cd	Cu	Zn	Cr	Ni	Fe	Mn	٧	As	Al	Hg	NO ₃ -N
			ng/m³	ng/m³	ng/m³	ng/m³	ng/m³	ng/m³	μg/m³	ng/m³	ng/m³	ng/m³	μg/m³	pg/m ³	μg/m3
January	1.01.	1.02.	0.80	0.07	1.54	21.7	3.88	3.62	0.95	14.9	4.18	0.11	0.53	0.78	0.02
February	1.02.	1.03.	0.71	0.12	0.70	21.9	2.98	2.71	0.13	2.42	0.78	0.05	0.11	0.92	0.02
March	1.03.	1.04.	0.51	0.03	0.68	17.9	4.11	3.26	0.35	4.92	2.37	0.07	0.14	0.78	0.03
April	1.04.	1.05.	1.66	0.11	1.16	14.1	9.16	5.78	0.46	9.34	1.85	0.36	0.24	0.79	0.07
May	1.05.	1.06.	1.09	0.24	1.09	14.8	9.87	6.35	0.67	8.28	1.99	0.10	0.28	0.41	0.12
June	1.06.	1.07.	1.76	0.56	2.01	43.6	9.34	70.1	0.21	9.74	0.62	0.05	0.17	0.78	0.06
July	1.07.	1.08.	0.66	0.03	0.98	13.1	6.18	4.20	0.14	2.16	0.41	0.04	0.07	0.49	0.05
August	1.08.	1.09.	0.42	0.01	0.54	6.07	8.79	4.85	0.11	1.60	0.28	0.04	0.04	0.24	0.05
September	1.09.	1.10.	0.77	0.03	0.65	7.45	10.4	8.08	0.16	2.42	0.43	0.06	0.06	0.31	0.05
October	1.10.	1.11.	0.49	0.02	0.83	4.62	7.24	6.09	0.44	8.28	1.60	0.07	0.25	0.23	0.06
November	1.11.	1.12.	0.47	0.13	0.46	6.16	6.43	5.11	0.09	1.51	0.30	0.03	0.03	0.19	0.03
December	1.12.	1.01.	2.68	1.01	2.76	26.8	7.98	14.12	0.11	4.09	0.32	0.03	0.10	0.49	0.03

Ireland

IE0001R – Valentia Observatory Concentrations in precipitation

	From:	To:	Precip.	As		Cd		Cr		Cu		Pb		Hg		Ni		Zn	
			mm	μg/l	flag														
January	1.01	1.02	200.4	0.5	781	0.05	781	0.5	781	0.5	781	0.5	781	100	781	1.0	781	6.0	
February	1.02	1.03	82.7		999		999		999		999		999	100	999		999		999
March	1.03	1.04	143.9	0.6	0	0.07		0.5	781	0.8		0.6		100	781	0.5	781	11.3	
April	1.04	1.05	158.9	0.5	781	0.05	781	0.5	781	0.6		0.5	781	100	781	0.5	781	10.1	
May	1.05	1.06	53.0	0.5	781	0.05	781	0.5	781	2.0		0.9		100	781	0.5	781	16.4	
June	1.06	1.07	52.2	0.6		0.05	781	0.6		1.1		0.5	781	100	781	0.5	781	11.7	
July	1.07	1.08	84.5	0.6		0.05	781	0.5	781	1.3		0.5	781	100	781	0.5	781	7.9	
August	1.08	1.09	166.7	0.6		0.05	781	0.5	781	1.1		0.5	781	100	781	0.5	781	8.3	
September	1.09	1.10	290.4	0.5	781	0.05	781	0.5	781	0.6		0.5	781	100	781	0.5	781	7.2	
October	1.10	1.11	101.4	0.5	781	0.05	781	0.5	781	0.5	781	0.5	781	100	781	0.5	781	5.4	
November	1.11	1.12	137.6	0.5	781	0.05	781	0.5	781	1.4		0.5	781	100	781	0.5	781	23.3	
December	1.12	1.01	304.4	0.5	781	0.05	781	0.5	781	0.5		0.5	781	100	781	0.5	781	38.0	

	From:	To:	Precip.	Mn	V	Al
			mm	μg/l _{flag}	μg/l _{flag}	μg/l _{flag}
January	1.01	1.02	200.4	0.5 781	10.0 781	18.1
February	1.02	1.03	82.7	999	999	999
March	1.03	1.04	143.9	1.4	1.3	29.8
April	1.04	1.05	158.9	1.8	1.0	20.0
May	1.05	1.06	53.0	5.2	1.3	70.7
June	1.06	1.07	52.2	3.5	1.2	69.3
July	1.07	1.08	84.5	3.4	1.2	26.4
August	1.08	1.09	166.7	2.0	1.1	18.5
September	1.09	1.10	290.4	8.0	1.0	6.9
October	1.10	1.11	101.4	0.6	0.5 781	23.5
November	1.11	1.12	137.6	0.6	0.5 781	8.5
December	1.12	1.01	304.4	0.9	0.5 781	8.3

IE0002R – Turlough Hill Concentrations in precipitation

	From:	To:	Precip.	As		Cd		Cr		Cu		Pb		Hg		Ni		Zn	
			mm	μg/l f	lag µ	ιg/l	flag	μg/l	flag										
January	1.01	1.02	198.0	0.5 7	781	0.05	781	0.5	781	0.5	781	0.5	781	100	781	1.0	781	2.6	
February	1.02	1.03	106.2	9	999		999		999		999		999		999		999		999
March	1.03	1.04	72.8	9	999		999		999		999		999		999		999		999
April	1.04	1.05	195.2	0.5 7	781	0.05	781	0.5	781	1.0		0.7		100	781	0.5	781	4.8	
May	1.05	1.06	119.2	0.5 7	781	0.07		0.5	781	1.1		1.0		100	781	0.5	781	6.2	
June	1.06	1.07	55.6	0.6		0.05	781	0.5	781	1.3		0.9		100	781	0.5	781	4.7	
July	1.07	1.08	36.8	0.6		0.09		0.5		1.7		1.1		100	781	0.6		5.7	
August	1.08	1.09	107.8	0.6		0.13		0.5	781	1.4		1.4		100	781	0.5		7.3	
September	1.09	1.10	263.0	0.5 7	781	0.05	781	0.5	781	0.7		0.5	781	100	781	0.5	781	4.1	
October	1.10	1.11	155.3	0.5 7	781	0.06		0.5	781	8.0		0.9		100	781	0.5	781	5.7	
November	1.11	1.12	164.0	0.5 7	781	0.05	781	0.5	781	0.5		0.5	781	100	781	0.5	781	2.8	
December	1.12	1.01	269.8	0.5 7	781	0.05	781	0.5	781	1.1		0.5	781	100	781	0.5	781	3.6	

	From:	To:	Precip.	NH₄-N		NO ₃ -N		Mn		٧		ΑI	
			mm	mg/l	flag	mg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag
January	1.01	1.02	198.0	0.17		0.05		2.7		10.0	781	12.4	
February	1.02	1.03	106.2	0.58		0.13			999		999		999
March	1.03	1.04	72.8	0.36		0.16			999		999		999
April	1.04	1.05	195.2	0.36		0.17		1.4		1.1		11.3	
May	1.05	1.06	119.2	0.35		0.23		3.3		1.3		30.1	
June	1.06	1.07	55.6	0.74		0.27		2.4		1.4		43.5	
July	1.07	1.08	36.8	0.61		0.34		3.4		1.4		51.6	
August	1.08	1.09	107.8	0.48		0.44		5.1		1.5		34.5	
September	1.09	1.10	263.0	0.10		0.09		1.3		1.1		12.7	
October	1.10	1.11	155.3	0.58		0.53		2.2		0.5		27.5	
November	1.11	1.12	164.0	0.14		0.13		8.0		0.5	781	11.5	
December	1.12	1.01	269.8	0.12		0.08		0.7		0.5	781	9.6	

	From:	To:	Precip.	γ-НС	Н	α-HC	Н	PCB	52	PCB1	01	PCB1	18	PCB1	138	PCB'	153	PCB ²	180
			mm	ng/l	flag	ng/l	flag												
January	1.01	1.02	198.0	1	781	1	781	1	781	1	781	1	781	1	781	1	781	1	781
February	1.02	1.03	106.2	2	781	2	781	2	781	2	781	2	781	2	781	2	781	2	781
March	1.03	1.04	72.8	2	781	2	781	2	781	2	781	2	781	2	781	2	781	2	781
April	1.04	1.05	195.2	1	781	1	781	1	781	1	781	1	781	1	781	1	781	1	781
May	1.05	1.06	119.2	2	781	2	781	2	781	2	781	2	781	2	781	2	781	2	781
June	1.06	1.07	55.6	3	781	3	781	3	781	3	781	3	781	3	781	3	781	3	781
July	1.07	1.08	36.8	3	781	3	781	3	781	3	781	3	781	3	781	3	781	3	781
August	1.08	1.09	107.8	2	781	2	781	2	781	2	781	2	781	2	781	2	781	2	781
September	1.09	1.10	263.0	51	781	10	781	10	781	10	781	10	781	10	781	10	781	10	781
October	1.10	1.11	155.3	5	781	5	781	1	781	1	781	1	781	1	781	1	781	1	781
November	1.11	1.12	164.0	7	781	1	781	1	781	6	781	3	781	4	781	4	781	1	781
December	1.12	1.01	269.8	5	781	2	781	1	781	1	781	1	781	1	781	1	781	1	781

	From:	To:	Precip.	ppDI	DD	opD	DD	ppD	DT	opD	DT	ppD	DE	Aldrin	Dielo	drin	End	rin	hep chl		hep chlo epox	or-
			mm	ng/l	flag	ng/l _{flag}	ng/l	flag	ng/l	flag	ng/l	flag	ng/l	flag								
January	1.01	1.02	198.0	1	781	1	781	1	781	1	781	1	781	1 781	1	781	1	781	1	781	1	781
February	1.02	1.03	106.2	2	781	2	781	2	781	2	781	2	781	2 781	2	781	2	781	2	781	2	781
March	1.03	1.04	72.8	2	781	2	781	2	781	2	781	2	781	2 781	2	781	2	781	2	781	2	781
April	1.04	1.05	195.2	1	781	1	781	1	781	1	781	1	781	1 781	1	781	1	781	1	781	1	781
Мау	1.05	1.06	119.2	2	781	2	781	2	781	2	781	2	781	2 781	2	781	2	781	2	781	2	781
June	1.06	1.07	55.6	3	781	3	781	3	781	3	781	3	781	3 781	3	781	3	781	3	781	3	781
July	1.07	1.08	36.8	3	781	3	781	3	781	3	781	3	781	3 781	3	781	3	781	3	781	3	781
August	1.08	1.09	107.8	2	781	2	781	2	781	2	781	2	781	2 781	2	781	2	781	2	781	2	781
September	1.09	1.10	263.0	10	781	10	781	10	781	10	781	10	781	10 781	20	781	20	781	10	781	10	781
October	1.10	1.11	155.3	1	781	1	781	1	781	1	781	1	781	1 781	1	781	2	781	1	781	1	781
November	1.11	1.12	164.0	1	781	1	781	1	781	1	781	1	781	1 781	1	781	1	781	1	781	1	781
December	1.12	1.01	269.8	1	781	1	781	1	781	1	781	1	781	1 781	1	781	1	781	1	781	1	781

Netherlands

NL0009R – Kollumerwaard Concentrations in precipitation

	From:																	
		To:	Precip.		As		Cd		Cr		Cu		Pb		Ni		Zn	
Approximate			mm	flag	μg/l	flag												
Month			HM															
January	23.12	18.01	67.1		0.45	781	0.41		0.42	781	1.32		1.10		0.55		22.2	
February	18.01	17.02	43.8		0.45	781	0.32		0.42	781	0.98		1.56		0.41	781	15.8	
March	17.02	17.03	54.3		0.45	781	0.07		0.42	781	1.72		1.19		0.41	781	7.2	
April	17.03	14.04	61.1		0.45	781	0.09		0.42	781	1.68		1.95		0.42		8.0	
	14.04	12.05	34.3		0.45	781	0.13		0.42	781	2.37		1.96		0.41	781	13.3	
May	12.05	9.06	52.7		0.68		0.07		0.42	781	1.85		1.85		0.41	781	8.6	
June	9.06	7.07	52.4		0.45	781	0.06		0.42	781	1.56		1.47		0.41	781	7.5	
July	7.07	4.08	13.5		0.45	781	0.14		0.42	781	7.66		2.06		0.41	781	10.0	
August	4.08	1.09	77.0		0.45	781	0.07		0.42	781	1.25		1.25		0.41	781	5.0	
September	1.09	29.09	47.9		0.51		0.18		0.42	781	5.15		2.32		0.83		11.9	
October	29.09	27.10	79.7		0.51		0.10		0.42	781	0.78		2.24		0.54		7.7	
November	27.10	24.11	67.5		0.45	781	0.11		0.42	781	0.64		1.24		0.41	781	6.2	
December	24.11	22.12		999		999		999		999		999		999		999		999

	From:	To:	Precip.	NH₄-N	NO ₃ -N
Approximate		10.	mm	mg/l _{flag}	mg/l flag
Month			N		
January	23.12	18.01	75.9	0.64	0.42
February	18.01	17.02	44.1	0.80	0.46
March	17.02	17.03	58.4	0.92	0.52
April	17.03	14.04	63.5	999	999
	14.04	12.05	35.6	1.62	0.77
Мау	12.05	9.06	57.3	999	999
June	9.06	7.07	55.2	1.09	0.50
July	7.07	4.08	14.2	0.94	0.45
August	4.08	1.09	81.6	1.13	0.48
September	1.09	29.09	51.9	1.05	0.57
October	29.09	27.10	86.4	0.59	0.36
November	27.10	24.11	68.8	0.36	0.29
December	24.11	22.12	163.0	0.85	0.44

Concentrations in air

	From:	To:	As ng/m³	Cd ng/m³	Pb ng/m³	Zn ng/m³	NH ₄ -N μg/m³	NO ₃ -N μg/m³
January	31.12	31.01	0.43	0.18	9.11	27.2	0.95	0.79
February	31.01	28.02	0.49	0.16	9.99	27.1	1.31	0.94
March	28.02	31.03	0.73	0.21	10.82	34.2	1.78	1.34
April	31.03	30.04	0.81	0.28	12.49	32.7	1.93	1.23
May	30.04	31.05	0.63	0.18	7.98	34.7	1.19	0.75
June	31.05	30.06	0.33	0.10	5.37	23.5	0.84	0.47
July	30.06	31.07	0.63	0.18	9.24	38.9	1.38	0.64
August	31.07	31.08	0.68	0.19	9.08	37.0	1.07	0.66
September	31.08	30.09	1.58	0.41	21.73	46.2	2.15	1.26
October	30.09	31.10	0.69	0.19	8.75	23.0	1.02	0.70
November	31.10	30.11	0.76	0.29	12.67	32.4	0.97	0.67
December	30.11	31.12	0.37	0.15	9.44	23.2	0.63	0.41

NL0091R - De Zilk Concentrations in precipitation

	From:	To:	Precip	As		Cd		Cr		Cu		Pb		Ni		Zn	
Approximate			mm	μg/l	flag												
Month			НМ														
January	23.12	18.01	76.2	0.45	781	0.09		0.42	781	1.11		1.73		0.63		4.3	3
February	18.01	17.02	43.1	0.45	781	0.07		0.42	781	1.36		2.98		0.47		5.9)
March	17.02	17.03	79.4	0.45	781	0.03	781	0.42	781	0.93		2.23		0.41	781	6.4	ļ
April	17.03	14.04	69.6	0.45	781	0.04		0.42	781	2.25		2.75		0.41	781	6.7	7
	14.04	12.05	33.8	0.45	781	0.15		0.42	781	3.42		5.59		0.57		20.9)
May	12.05	9.06	67.5	0.45	781	0.07		0.42	781	2.21		4.28		0.75		10.3	3
June	9.06	7.07	73.5	0.45	781	0.03	781	0.42	781	0.88		2.26		0.41	781	5.0)
July	7.07	4.08	14.0	0.45	781	0.04		0.42	781	3.06		2.53		0.43		7.3	3
August	4.08	1.09	106.0	0.45	781	0.03	781	0.42	781	0.98		2.20		0.45		4.6	6
September	1.09	29.09	62.7	0.45	781	0.06		0.42	781	1.25		2.97		0.41	781	5.8	3
October	29.09	27.10	140.1	0.45	781	0.03		0.42	781	0.93		1.40		0.41	781	3.3	781
November	27.10	24.11	92.8	0.45	781	0.10		0.42	781	2.28		4.02		0.42		8.6	6
December	24.11	22.12	92.6		999		999		999		999		999		999		999

	From:	To:	Precip.	γ-НСН		Precip.	NH₄-N		NO ₃ -N			Precip	Hg
Approximate			mm	ng/l	flag	mm	mg/l	flag	mg/l	flag		mm	ng/l
Month			HCH			N						Hg	
January	23.12	18.01	79.3	10		77.4	0.38		0.32		Jan	64	8.2
February	18.01	17.02	49.3	10		45.8	0.35		0.54		Feb	16	10.0
March	17.02	17.03	84.6	10		79.9	0.52		0.45		Mar	80	10.0
April	17.03	14.04	73.1	40		68.7	0.98		0.74		Apr	46	14.0
	14.04	12.05	35.9	60		32.7	2.04		1.48		May	26	22.0
May	12.05	9.06	68.2	30		67.1	0.88		0.81		Jun	86	13.0
June	9.06	7.07	74.8	10		72.8	0.60		0.48		Jul	38	17.0
July	7.07	4.08	16.5	10		14.0	0.74		0.71		Aug	94	13.0
August	4.08	1.09	106.2	10		104.3		999		999	Sep	58	15.0
September	1.09	29.09	65.8	10		61.4	0.63		0.44		Oct	75	3.8
October	29.09	27.10	141.6	10	781	138.9	0.27		0.30		Nov	87	8.6
November	27.10	24.11	96.7	10		93.3	0.25		0.33		Dec	121	7.1
December	24.11	22.12	95.8	10	781	92.3	0.27		0.35				

From:	To:	NH ₄ -N	NO₃-N
		μg/m³	μg/m³

January	31.12	31.01	0.81	0.60
February	31.01	28.02	1.35	0.89
March	28.02	31.03	1.41	1.01
April	31.03	30.04	1.00	0.66
May	30.04	31.05	1.15	0.74
June	31.05	30.06	0.69	0.38
July	30.06	31.07	1.02	0.48
August	31.07	31.08	1.09	0.52
September	31.08	30.09	0.89	0.49
October	30.09	31.10	1.00	0.59
November	31.10	30.11	0.74	0.48
December	30.11	31.12	0.40	0.27

Norway

NO0057R – Ny Ålesund Concentrations in precipitation

	From:	To:	Precip.	NH ₄ -N	NO ₃ -N
			mm	mg/l	mg/l
January	1.01	1.02	27.3	0.05	0.16
February	1.02	1.03	0.0		
March	1.03	1.04	19.8	0.14	0.12
april	1.04	1.05	11.0	0.12	0.07
May	1.05	1.06	17.7	0.26	0.21
June	1.06	1.07	24.7	1.07	0.94
July	1.07	1.08	19.2	0.20	0.15
August	1.08	1.09	11.3	0.06	0.10
September	1.09	1.10	39.7	0.05	0.05
October	1.10	1.11	21.4	0.04	0.04
November	1.11	1.12	28.3	0.18	0.05
December	1.12	1.01	6.4	0.10	0.13

NO0042R – Zeppelin mountain Concentrations in air

	From:	To:	As	Cd	Cr	Cu	Pb	Ni	Zn	٧	Co	Mn
			ng/m³									
January	1.01	1.02	0.17	0.04	0.34	0.23	0.79	0.14	2.35	0.23	0.12	0.46
February	1.02	1.03	0.27	0.03	0.44	0.38	1.07	0.27	3.53	0.58	0.06	1.43
March	1.03	1.04	0.08	0.02	0.04	0.29	0.50	0.17	1.23	0.25	0.09	0.30
April	1.04	1.05	0.17	0.05	0.08	0.40	0.90	0.20	3.75	0.18	0.11	0.62
May	1.05	1.06	0.04	0.02	0.05	0.44	0.38	0.12	1.88	0.06	0.06	0.22
June	1.06	1.07	0.01	0.01	0.03	0.15	0.10	0.09	0.63	0.02	0.03	0.06
July	1.07	1.08	0.01	0.00	0.03	0.07	0.03	0.09	0.37	0.06	0.03	0.24
August	1.08	1.09	0.01	0.00	0.04	0.08	0.04	0.12	0.32	0.11	0.03	0.18
September	1.09	1.10	0.01	0.00	0.07	0.10	0.05	0.07	0.32	0.05	0.02	0.53
October	1.10	1.11	0.00	0.00	0.30	0.04	0.04	0.09	0.10	0.02	0.03	0.10
November	1.11	1.12	0.06	0.01	0.05	0.42	0.30	0.12	0.75	0.09	0.03	0.47
December	1.12	1.01	0.15	0.03	0.07	0.73	0.88	0.17	1.49	0.19	0.03	0.56

	From:	To:	NH ₃ +NH ₄ -N	HNO ₃ +NO ₃ -N
			μ g /m³	μ g /m³
January	1.01	1.02	0.11	0.04
February	1.02	1.03	0.15	0.03
March	1.03	1.04	0.33	0.03
April	1.04	1.05	0.18	0.03
May	1.05	1.06	0.20	0.05
June	1.06	1.07	0.16	0.03
July	1.07	1.08	0.39	0.06
August	1.08	1.09	0.30	0.03
September	1.09	1.10	0.21	0.02
October	1.10	1.11	0.08	0.02
November	1.11	1.12	0.06	0.02
December	1.12	1.01	0.10	0.03

NO0099R – Lista Concentrations in precipitation

	From:	To:	Precip.	As		Cd		Cr		Cu		Pb		Hg		Ni		Zn	
			mm	μg/l	flag	ng/l	flag	μg/l	flag	μg/l	flag								
			HM																
January	1.01	1.02	114.0	0.07		0.02		0.10		0.41		0.83		8.80		0.13		3.94	
February	1.02	1.03	109.3	0.10		0.01		0.14		0.60		1.12		8.10		0.11		7.42	
March	1.03	1.04	170.6	0.10		0.02		0.11		0.36		1.58		9.10		0.11		3.13	
April	1.04	1.05	71.8	0.15		0.01		0.17		0.54		1.23		11.80		0.20		5.45	
May	1.05	1.06	46.4	0.18		0.15		0.14		2.38		2.02		17.50		0.39		6.36	
June	1.06	1.07	147.6	0.10		0.01		0.10		0.66		0.76			999	0.11		2.21	
July	1.07	1.08	62.9	0.10		0.01		0.28		2.28		1.23		8.50		1.29		6.88	
August	1.08	1.09	71.1	0.19		0.02		0.10		4.36		4.55		14.10		1.29		15.72	
September	1.09	1.10	86.5	0.21		0.04		0.16		2.07		2.41		14.30		0.40		10.12	
October	1.10	1.11	156.3	0.18		0.03		0.13		0.72		1.43		6.50		0.21		5.93	
November	1.11	1.12	70.2	0.78		0.08		0.30		4.10		2.09		14.10		0.65		13.84	
December	1.12	1.01	153.7	0.56		0.03		0.61		4.84		1.75		6.10		0.53		14.63	

	From:	To:	Precip.	٧		Со		g-HCH		Precip.	NH ₄ -N	١	NO ₃ -N	
			mm	μg/l	flag	μg/l	flag	ng/l	flag	mm	mg N/I	flag n	ng N/I	flag
										N				
January	1.01	1.02	114.0	0.49		0.02		2.70		122.7	0.39		0.72	
February	1.02	1.03	109.3	0.38		0.02		1.80		115.1	0.30		0.49	
March	1.03	1.04	170.6	0.57		0.02		17.40		157.8	0.64		0.71	
April	1.04	1.05	71.8	0.36		0.04		6.00		67.0	0.55		0.42	
May	1.05	1.06	46.4	0.52		0.06		17.30		46.9	0.88		0.98	
June	1.06	1.07	147.6	0.28		0.01		9.40		172.9	0.83		0.79	
July	1.07	1.08	62.9	0.62		0.06		2.80		64.2	0.55		0.67	
August	1.08	1.09	71.1	0.56		0.01		2.30		73.0	0.37		0.94	
September	1.09	1.10	86.5	0.62		0.06		4.70		92.7	0.29		0.75	
October	1.10	1.11	156.3	0.71		0.03		1.60		165.0	0.54		0.47	
November	1.11	1.12	70.2	1.46		0.07		2.60		54.8	1.10		1.10	
December	1.12	1.01	153.7	1.20		0.06		2.10		141.1	0.31		0.44	

	From:	To:	As	Cd	Cr	Cu	Pb	Ni	٧	γ-НСН
			ng/m³	pg/m³						
January	1.01	1.02	0.26	0.08	0.92	0.68	1.25	0.56	0.57	7.2
February	1.02	1.03	0.22	0.05	1.29	0.44	1.72	0.42	0.75	7.5
March	1.03	1.04	0.35	0.12	1.46	0.77	3.44	0.79	1.61	23.1
April	1.04	1.05	0.25	0.09	1.43	0.82	2.64	0.54	1.09	41.7
May	1.05	1.06	0.19	0.05	1.45	0.59	2.18	0.54	1.03	28.1
June	1.06	1.07	0.22	0.05	1.27	0.42	2.58	0.45	1.02	75.9
July	1.07	1.08	0.11	0.03	1.15	0.29	1.59	0.35	0.76	47.8
August	1.08	1.09	0.22	0.04	1.56	0.58	1.69	0.64	1.31	48.5
September	1.09	1.10	0.43	0.10	1.54	1.27	4.23	1.08	2.15	55.4
October	1.10	1.11	0.28	0.04	1.41	0.75	1.72	0.45	0.61	23.6
November	1.11	1.12	0.41	0.06	2.13	1.50	2.17	0.52	0.70	33.9
December	1.12	1.01	0.18	0.04	2.66	0.61	1.32	0.47	0.54	13.3

NO0001R – Birkenes Concentrations in air

	From:	То:	HNO₃+NO₃ μg N/m³	NH₃+NH₄ μg N/m³	NO₂-N μg N/m³
January	1.01	1.02	0.30	0.22	0.82
February	1.02	1.03	0.18	0.14	0.46
March	1.03	1.04	0.52	0.23	0.75
April	1.04	1.05	0.61	0.25	0.36
May	1.05	1.06	0.54	0.18	0.46
June	1.06	1.07	0.60	0.21	0.39
July	1.07	1.08	1.16	0.15	0.40
August	1.08	1.09	0.48	0.20	0.38
September	1.09	1.10	0.78	0.31	0.56
October	1.10	1.11	0.47	0.15	0.54
November	1.11	1.12	0.34	0.26	0.64
December	1.12	1.01	0.15	0.10	0.50

Portugal

PT0003R – Viana do Castelo Concentrations in precipitation

	From:	To:	Precip.	Cd		Cu	Pb		Ni		Zn	Mn	NH₄-N	NO ₃ -N
			mm	μg/l	flag	μg/l	μg/l	flag	μg/l	flag	μg/l	μg/l	mg/l	mg/l
January	1.01	1.02	128.0	0.43	780	2.67	1.59		1.63		24.2	5.15	0.16	0.25
February	1.02	1.03	27.5	0.43	780	2.39	0.65	780	0.78	780	28.6	3.54	0.27	0.19
March	1.03	1.04	112.6	0.52		1.94	0.65	780	0.87		15.1	3.35	0.31	0.14
April	1.04	1.05	140.7	0.43	780	2.37	0.65	780	0.78	780	25.5	2.25	0.12	0.17
May	1.05	1.06	96.2	0.43	780	2.16	0.88		1.47		12.5	2.38	0.22	0.26
June	1.06	1.07	14.7	0.59		2.72	0.65	780	1.51		23.2	3.43	0.20	0.26
July	1.07	1.08	15.9	0.43	780	3.19	0.65	780	0.78	780	60.4	6.88	0.37	0.27
August	1.08	1.09	85.4	0.43	780	3.87	0.65	780	1.53		12.9	2.72	0.14	0.15
September	1.09	1.10	359.6	0.43	780	2.46	0.65	780	0.78	780	7.4	2.91	0.12	0.04
October	1.10	1.11	217.3	0.43	780	2.22	0.78		0.78	780	7.2	2.24	0.10	0.04
November	1.11	1.12	84.1	0.43	780	2.54	0.87		0.78	780	19.7	3.47	0.11	0.18
December	1.12	1.01	213.8	0.43	780	3.10	0.65	780	0.78	780	17.8	2.47	0.07	0.13

Flags not given as daily data submitted

PT0004R – Monte Velho Concentrations in precipitation

	From:																
		To:	Precip.	Cd		Cu		Pb		Ni		Zn		Mn	1	NH₄-N	NO_3-N
			mm	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l f	flag	mg/l	mg/l
January	1.01	1.02	63.5	0.61		0.79		0.55	780	1.06		19.86		5.01		0.04	0.13
February	1.02	1.03	10.9	0.87		2.08		0.65	780	0.78	780	27.34		2.90		1.41	0.71
March	1.03	1.04	87.4	0.43	780	0.71		0.65	780	0.78	780	10.76		1.49		0.09	0.07
April	1.04	1.05	25.3	0.43	780	2.71		0.65	780	2.02		20.47		5.05		1.24	0.24
May	1.05	1.06	63.5	0.55		1.85		0.69		2.25		13.47		3.25		0.27	0.27
June	1.06	1.07	0.0		999		999		999		999		999	9	999		
July	1.07	1.08	0.0		999		999		999		999		999	g	999		
August	1.08	1.09	13.2	0.43	780	2.43		0.65	780	2.09		14.00		1.08		0.02	0.16
September	1.09	1.10	86.4	0.43	780	1.50		0.65	780	0.78	780	22.00		6.53		0.33	0.22
October	1.10	1.11	123.3	0.43	780	1.37		0.65	780	0.78	780	5.71		2.66		0.20	0.09
November	1.11	1.12	42.6	0.43	780	0.93		1.13		0.78	780	6.33		8.39		0.15	0.18
December	1.12	1.01	43.9	0.43	780	1.36		0.65	780	0.78	780	4.19		1.08		0.02	0.08

PT0010R – Angra do Heroismo Concentrations in precipitation

	From:	To:	Precip.	Cd		Cu		Pb		Ni		Zn		Mn		NH₄-N		NO ₃ -N	
			mm	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	ng/l	flag	mg/l	flag	mg/l	flag
January	28.12	26.01	112.3	0.87		1.95		0.65	780	7.02		99.61		5.84		0.05		0.17	
February	26.01	23.02	28.3	0.43	780	3.30		0.65	780	11.32		150.97		13.71		0.25		0.20	
March	23.02	23.03	54.9	0.43	780	1.23		1.12		2.35		32.90		2.61		0.04		0.20	
April	23.03	27.04	56.9	0.43	780	1.05		1.14		4.36		12.44		6.21		0.04		0.32	
May	27.04	25.05	85.9	1.04		1.08		0.81		1.73		12.24		3.84		0.02		0.24	
June	25.05	29.06	57.5	2.40		2.19		0.70		2.44		16.38		3.65		0.02		0.28	
July	29.06	27.07	13.6	0.66		4.52		6.16		5.41		53.36		12.78		0.04		0.59	
August	27.07	24.08	71.7	0.43	780	1.98		1.23		1.33		18.18		2.61		0.05		0.15	
September	24.08	28.09	84.4	0.43	780	3.25		1.91		0.78	780	19.43		4.37		0.02		0.08	
October	28.09	26.10	53.3	0.43	780	1.38		1.14		0.78	780	16.48		3.87		0.08		0.08	
November	26.10	23.11	148.7	0.43	780	1.70		0.73		0.78	780	91.40		13.06		0.10		0.14	
December	23.11	28.12	183.4	0.43	780	2.38		0.65	780	0.78	780	124.94		25.48		0.02		0.14	

Sweden

SE0002R – Rørvik Concentrations in precipitation

	From:	To:	Precip.	Hg	Precip.	NH₄-N	NO ₃ -N
			mm	ng/I _{flag}	mm	mg/l	mg/l
January	1.01	1.02	47	7.3	69.8	0.41	0.64
February	1.02	1.03	49	8.9	58.3	0.32	0.44
March	1.03	31.03	41	11.4	63.5	1.54	1.29
april	31.03	30.04	81	9	54.3	0.50	0.39
May	30.04	31.05	30	18.7	35.5	0.66	0.51
June	31.05	30.06	109	11.1	146.7	0.38	0.40
July	30.06	31.07	40	12.7	62.7	0.42	0.40
August	31.07	31.08	110	6.4	121.4	0.34	0.33
September	31.08	30.09	108	9.1	68.2	0.57	0.62
October	30.09	31.01	68	6.8	87.3	0.38	0.41
November	31.01	30.11	9	13.8	12.0	0.94	1.25
December	30.11	30.12	Lost	890	87.6	0.17	0.31

Concentrations in air

	HNO₃+NO₃ μg N/m³	NH₃+NH₄ μg N/m³	NO₂ μg N/m³
January	0.66	0.75	2.63
February	0.74	0.66	2.36
March	0.92	1.55	1.91
April	2.23	2.85	1.62
May	0.48	0.63	1.21
June	0.58	0.82	0.93
July	0.45	0.72	1.02
August	0.37	0.60	0.96
September	0.75	1.35	1.18
October	0.40	0.67	1.19
November	0.75	1.11	2.42
December	0.21	0.16	1.52

SE0097R – Gårdsjøn Concentrations in precipitation

	From:	To:	Precip.	As	Cd	Cr	Pb	Ni	Zn
			mm	μg/l _{flag}					
January	4.01	28.01	199	0.10 781	0.07	0.15	1.08	0.19	3.94
February	28.01	2.03	40	0.10 781	0.03	0.36	1.42	0.34	5.82
March	2.03	30.03	172	0.10 781	0.11	0.39	2.91	0.45	8.88
April	30.03	2.05	34	0.10 781	0.05	0.25	2.63	0.06	15.47
May	2.05	31.05	97	0.10 781	0.01	0.20	1.16	0.08	13.42
June	31.05	1.07	83	0.11	0.05	0.36	1.60	0.29	16.30
July	1.07	1.08	119	0.10 781	0.03	0.17	1.43	0.09	10.92
August	1.08	30.08	60	0.10 781	0.03	0.23	2.41	0.05 781	24.28
September	30.08	29.09	105	0.11	0.04	0.29	1.75	0.22	26.06
October	29.09	2.11	97	0.10 781	0.03	0.18	0.99	0.13	12.68
November	2.11	6.12	Lost	999	999	999	999	999	999
December	6.12	6.01	91	0.08	0.01	0.16	1.01	0.17	2.98

	From:	To:	Precip.	NO ₃ -N	NH₄-N
			mm	mg/l	mg/l
January	4.01	28.01	161	0.47	0.31
February	28.01	2.03	60	0.57	0.40
March	2.03	30.03	131	0.81	0.93
April	30.03	2.05	126	0.32	0.39
May	2.05	31.05	106	0.41	0.66
June	31.05	1.07	170	0.42	0.38
July	1.07	1.08	62	0.56	0.77
August	1.08	30.08	87	0.39	0.39
September	30.08	29.09	78	0.36	0.41
October	29.09	2.11	124	0.33	0.27
November	2.11	6.12	25	1.27	0.18
December	6.12	6.01	274	0.28	0.19

SE0098R – Svartedalen Concentrations in precipitation

	From:	To:	Precip.	NH₄-N	NO ₃ -N
			mm _{flag}	mg/l _{flag}	mg/l _{flag}
January	5.01	29.01	166	0.09	0.25
February	29.01	2.03	132	0.57	0.75
March	2.03	30.03	122	1.39	1.11
April	30.03	13.05	166	0.47	0.35
May	13.05	2.06	50	1.23	0.89
June	2.06	29.06	165	0.47	0.51
July	29.06	1.80	999	999	999
August	3.08	31.08	109	0.46	0.43
September	31.08	30.09	118	0.49	0.48
October	30.09	31.10	108	0.28	0.32
November	31.10	2.12	999	999	999
December	2.12	6.01	269	0.24	0.36

United Kingdom

GB0014R – High Muffles Concentrations in precipitation

	From:	To:	Precip.	As		Cd		Cr		Cu		Pb		Ni		Zn	
			mm	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag	μg/l	flag
January	30.12	3.02	84.7	0.25		0.06		0.09		1.90		2.8		0.26		4.7	
February	3.02	3.03	45.9	0.18		0.06		1.00		2.00		2.2		0.37		3.8	
March	3.03	31.03	178.1	0.18		0.08		0.15		1.10		3.1		0.27		4.4	
April	31.03	5.05	71.4	0.13		0.04		0.05		1.90		1.9		0.19		4.3	
May	5.05	2.06	51.3	0.30		0.31		3.50	459	3.50		4.7		1.10		7.6	
June	2.06	30.06	77.1	0.79		0.04		0.003	781	2.90		2.3		0.38		8.0	
July	30.06	3.08	24.6	0.20		0.04		0.20		2.00		2.4		0.46		8.8	
August	3.08	1.09	115.9	0.07		0.03		0.10		0.45		1.0		0.10		24.0	459
September	1.09	29.09	64.5	0.29		0.06		0.20		1.20		3.4		0.36		8.8	
October	29.09	3.11	78.1	0.20		0.08		0.32		0.85		2.2		0.31		5.3	
November	3.11	1.12	76.6	0.20		0.06		0.20		0.78		2.2		0.33		4.6	
December	1.12	1.01	82.8	0.20		0.05		0.20		0.66		1.9		0.20		6.8	

Concentrations in air

	From:	To:	As		Cd		Cr		Cu		Pb		Ni		Zn	
			ng/m³	flag												
January	30.12	3.02	0.08		0.20		0.04	781	4.80		0.6		0.68		7.7	
February	3.02	3.03	0.51		0.19		0.03		8.82		6.8		2.16		18.0	
March	3.03	31.03	0.70		0.20		0.77		2.59		8.2		0.89		12.3	
April	31.03	5.05	0.68		0.18		0.79		3.18		8.3		0.82		9.3	
May	5.05	2.06	0.55		0.06		0.04	781	2.32		6.3		1.18		27.5	
June	2.06	30.06	0.45		0.04		0.06		3.84		5.3		1.19		49.0	
July	30.06	3.08	0.31		0.11	781	0.04	781	9.15		8.0		0.08	781	30.9	
August	3.08	1.09	0.83		0.12	781	0.04	781	9.13		8.7		0.08	781	30.7	
September	1.09	29.09	0.87		0.13	781	0.04	781	8.71		15.7		0.09	781	95.9	
October	29.09	3.11	0.29		0.10	781	0.04	781	1.46		8.8		21.19	459	208.3	459
November	3.11	1.12	1.37		0.12	781	0.04	781	2.36		21.1		0.08	781	31.5	
December	1.12	1.01	0.87		0.44		0.04	781	1.96		11.3		0.09	781	126.1	

GB0090R – East Ruston Concentrations in precipitation

	From:	To:	precip	As		Cd		Cr		Cu		Pb	
			mm	μg/l	flag								
January	11.12	18.01	116.0	0.08		0.02		0.06		0.60		1.1	
February	18.01	2.03	83.0	0.12		0.03		0.37		0.84		1.7	
	March/A	pril sing	le sample										
March/April	2.03	28.04	88.5	0.25		0.07		0.32		2.00		2.5	
May	28.04	31.05	31.8	9.40	459	0.15		2.50		2.90		5.1	
June	31.05	28.06	72.2	0.14		0.04		0.16		1.10		1.4	
July	28.06	3.08	65.0	0.10		0.04		0.48		1.60		1.4	
August	3.08	30.08	127.6	0.09		0.03		0.09		0.82		1.5	
September	30.08	12.10	152.0	0.10		0.04		0.10		0.90		1.9	
October	12.10	10.11	48.0	0.25		0.09		0.10		1.30		2.3	
November	10.11	2.12	41.5	0.10		0.04		0.20		1.10		1.0	
December	2.12	11.01	88.0	0.09		0.02		6.10	459	2.40		2.4	

Concentrations in air

	From:	To:	As	Cd	Cr	Cu	Pb	Ni (3	Zn
			ng/m³ flag	ng/m³ _{flag}					
January	11.12	18.01	3.13	0.20	0.47	2.91	8.2	0.69	7.5
February	18.01	2.03	0.51	0.16	0.82	3.20	1.0	1.05	10.7
	March/	April sin	gle sample						
March/April	2.03	28.04	0.81	0.24	0.66	2.91	12.8	1.82	15.0
May	28.04	31.05	0.36	0.19	0.39	1.26	6.9	1.84	18.1
June	31.05	28.06	0.39	0.07	0.10 781	1.45	8.1	1.45	10.6
July	28.06	3.08	0.79	0.09 781	0.03 781	4.11	15.0	0.06 781	29.3
August	3.08	30.08	0.89	0.12 781	3.49	3.84	17.5	0.08 781	22.1
September	30.08	12.10	1.62	0.48 781	1.90	5.47	28.5	0.05 781	28.5
October	12.10	10.11	1.93	0.36	0.04 781	5.36	32.1	0.07 781	2.4
November	10.11	2.12	1.86	0.47	0.05 781	3.21	27.4	0.09 781	32.5
December	2.12	11.01	1.68	0.80	0.03 781	4.27	34.7	0.05 781	25.6

GB0091R – Banchory Concentrations in precipitation

	From:									
		To:	precip	As	Cd	Cr	Cu	Pb	Ni	Zn
			mm	μg/l _{flag}	μg/I _{flag}					
January	31.12	27.01	48.6	0.06	0.03	0.34	5.4	0.76	0.14	2.4
February	27.01	5.03	70.4	0.08	0.04	0.18	1.1	1.10	0.17	2.1
March	5.03	1.04	31.9	0.09	0.04	1.80 459	1.2	0.79	0.94	1.9
April	1.04	30.04	70.0	0.07	0.05	0.15	0.6	1.10	0.14	3.1
May	30.04	4.06	55.5	0.26	0.10	0.003 781	3.4	3.00	0.71	4.6
June	4.06	2.07	82.8	0.62 459	0.03	0.003 781	29.0 459	0.57	0.65	8.0
July	2.07	30.07	52.3	0.07	0.04	0.06	0.9	0.74	0.20	2.7
August	30.07	31.08	42.9	0.09	0.04	0.10	1.0	0.86	0.20	5.3
September	31.08	1.10	133.0	0.20	0.05	0.10	0.6	1.50	0.20	4.1
October	1.10	2.11	133.0	0.05	0.12	0.41	0.7	0.32	0.20	3.9
November	2.11	6.12	80.9	0.05	0.10	0.41	0.7	0.31	0.30	3.6
December	6.12	7.01	115.6	0.03	0.02	0.02	0.3	0.40	0.20	15.0 ₄₅₉

	From:	To:	As		Cd		Cr		Cu		Pb		Ni		Zn	
			ng/m³	flag												
January	31.12	27.01			0.13		0.36		1.32		1.20		0.10	781	5.10	
February	27.01	5.03		999		999		999		999		999		999		999
March	5.03	1.04	0.10		0.11		0.41		0.98		1.86		0.10	781	2.63	
April	1.04	30.04	0.12		0.13		1.03		0.92		1.70		0.10	781	3.40	
May	30.04	4.06	0.10		0.03				0.77		1.93		0.51		10.7	
June	4.06	2.07	0.83		0.03				0.51		0.25		0.05			999
July	2.07	30.07	0.30		0.15	781	0.99		3.43		2.29		0.10	781	14.9	
August	30.07	31.08	0.27		0.14	781	0.05		1.85		2.62		0.10	781	22.6	
September	31.08	1.10	0.22		0.16	781	2.18		0.27		2.34		0.10	781	14.2	
October	1.10	2.11	0.16		0.12	781	0.04		2.20		4.48		0.10	781	32.6	
November	2.11	6.12	0.37		0.14	781	3.25		0.47		2.32		0.10	781	22.8	
December	6.12	7.01	0.30		0.11	781	10.39	459	0.52		3.60		0.10	781	23.0	

Appendix B

Principles for the Comprehensive Atmospheric Monitoring Programme (CAMP)

1. Objectives

The main objectives of the CAMP are to monitor the concentrations of selected contaminants in precipitation and air and their depositions in order:

- to assess, as accurately as appropriate, the atmospheric input of the selected contaminants to the maritime area and regions thereof on an annual basis;
- to determine long-term trends in atmospheric inputs;
- for their use in relation to modelling activities, specifically to validate atmospheric transport models used for assessments of atmospheric inputs to maritime area.

2. The network¹

Each Contracting Party bordering the maritime area (EU excluded) should have at least one monitoring station on the coast and/or offshore to be included in the joint monitoring programme. Contracting Parties which border more than one OSPAR Region should have at least one monitoring station at the coast and/or offshore within each. The station should be a so-called *background station*, that is, a station which is not directly influenced by local sources. The station should be located not more than 10 km from the coastline. At the station simultaneous measurements of the chemical composition of air and precipitation are to be performed.

3. Chemical composition of precipitation

3.1. Components to be measured²

The following contaminants are to be measured on a mandatory basis in precipitation:

• heavy metals: arsenic

cadmium chromium copper lead mercury nickel zinc

persistent organic contaminants: γ-HCl

γ-HCH³ (lindane) ammonium (NH₄⁺) nitrate (NO₃⁻)

nutrients:

Contracting Parties should take into account developments within the framework of other international organisations (particularly AMAP, EMEP, HELCOM and WMO).

Not all contaminants included in the Joint Assessment and Monitoring Programme (JAMP) are mentioned here as mandatory or voluntary components. Reasons are either because the atmospheric pathways are negligible (e.g. oil, TBT) or because routine monitoring methods are extremely expensive or not yet fully developed (e.g. furans, dioxins). However, when information is available, for example during a measuring campaign, Contracting Parties are strongly encouraged to submit these data to the data base manager.

In view of the low concentrations, the monitoring of α -HCH is no longer mandatory. When γ -HCH is not measured as a separate component, it should be clearly stated in the data reports that total HCH has been measured.

The following contaminants should be measured on a voluntary basis in precipitation:

• persistent organic contaminants: the PCB-congeners 28, 52, 101, 118, 138, 153

and 180⁴

the following PAHs: phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[a]pyrene, benzo[ghi]perylene,

indeno[1,2,3-cd]pyrene

For quality assurance purposes Contracting Parties are encouraged to report pH, electrical conductivity and the concentrations in precipitation of the major ions (Na⁺, K⁺, Ca²⁺, Mg²⁺, SO₄²⁻, Cl⁻, NH₄⁺, NO₃⁻, HCO₃⁻).

3.2. Sampling and analysing methods⁵

For CAMP the use of wet-only samplers is recommended. The use of bulk collectors is acceptable when on a regular basis, an intercomparison of results of wet-only and bulk samplers actually in use in the network takes place. Samplers should be designed for sampling during all seasons and climatic conditions. Formation of ice in funnel or bottle must be avoided; at stations where high temperatures are expected in the summer, cooling of the samples might be needed. The size of funnel and bottles should be adapted to the length of the sampling period and expected precipitation amount.

Each individual sampler must be identified with a short, unique name⁶, for bulk precipitation samplers, the bucket stand is named and the bucket itself is a nameless consumable. All measurements must be related to a field sampler or instrument identified in this manner. Official precipitation amounts should be reported where available (see paragraph 3.4). In addition, the precipitation amount measured in each individual sampler must be reported.

There are several methods for analysing of heavy metals (excluding mercury) in precipitation and in aerosol filters. Direct methods without extraction of the filters are instrumental neutron activation analysis (INAA), particle induced X-ray emission (PIXE) and X-ray fluorescence. Methods for analysing heavy metals in precipitation and dissolved particles from filters are atomic absorption spectroscopy (AAS) with flame- or electrothermal atomisation, inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectroscopy (ICP-MS). The latter method (ICP-MS) has been recommended at an EMEP workshop (Moscow, September 1996) as the analytical reference method for the heavy metals As, Cd, Cr, Cu, Ni, Pb, and Zn.

_

Although atmospheric input is estimated to be the most important input route to the maritime system it is judged not appropriate to recommend the mandatory monitoring of PCBs taking into account that PCBs were due to be phased out in all Contracting Parties. In this regard it is proposed that it is more appropriate to recommend targeted monitoring activities in areas expected to have relatively high PCB loads.

See for an overview of sampling and analysing methods currently in use within Europe the report and proceedings of the workshop on the assessment of EMEP activities concerning Heavy Metals and Persistent Organic Pollutants and their further development, Moscow, Russian Federation, 24-26 September 1996; Report 117, Volumes I and II, World Meteorological Organisation, Global Atmospheric Watch, Geneva, Switzerland.

⁶ For more details, see chapter 6.1.

In designing a sampling methodology the JAMP guidelines for the Sampling and Analysis of Mercury in Air and Precipitation and the JAMP Guidance Note on Sampling and Analysis of PCBs in Air and Precipitation should be taken into account⁷.

In general terms the detection limits of the measured contaminants should be well below the ambient levels by a factor of 10.

3.3. Sampling frequency

Sampling periods from one week to one month are acceptable. It is recommended however, that samples should be taken on a weekly basis in order to reduce the risk of (bio)chemical change in samples and/or the accidental contamination of samples (e.g. via bird droppings). When the samples are stored in a safe way (e.g. frozen) two or more samples can be combined before analysis to longer, regular intervals (e.g. monthly or 4-weekly averaged samples).

If weekly sampling is used and if a week includes two adjacent months, the measured data should be allocated to the month which comprises the largest number of days in the week in question. It is recommended , however, to have two sampling periods for a week that crosses a month boundary, even if one of these is only a one-day sample. It is recommended that samples are always changed at a fixed time (e.g. at 8.00 am (UT)) on every Tuesday and on the first of every month.

3.4. Precipitation amount

For the evaluation of the chemical composition of precipitation and for the estimation of wet deposition fluxes correct data on precipitation amounts is needed. Common practice has shown that the efficiency of chemical samplers for sampling of precipitation may differ considerably even for identical samplers; this results in different "observed" precipitation amounts (and therefore wet deposition fluxes). Parallel to the chemical measurements a standard rain gauge should be used according to WMO recommendations for measuring the precipitation amount. Alternatively, the results of a nearby located meteorological station which is shown to be representative for the CAMP-location may be used.

4. Chemical composition of ambient air and aerosol

4.1. Components to be measured

The following contaminants are to be measured on a mandatory basis in air:

• nutrients: in gaseous phase: NO₂, HNO₃, and NH₃

in aerosol phase⁸: ammonium (NH₄⁺) and nitrate

 (NO_3)

The following contaminants should be carried out on a voluntary basis in air:

heavy metals: arsenic

cadmium chromium copper lead mercury

Secretariat Note: these JAMP Guidelines are available from the OSPAR Secretariat on request.

As an alternative total nitrate (sum of gaseous HNO₃ and particulate NO₃) and total ammonium (sum of gaseous NH₃ and particulate NH₄) can be measured.

nickel zinc

• nutrients: NO

• persistent organic contaminants: γ-HCH (lindane)

the PCB-congeners 28, 52, 101, 118, 138, 153

and 180

the following PAHs: phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[a]pyrene, benzo[ghi]perylene,

indeno[1,2,3-cd]pyrene

4.2. Sampling and analysing methods⁹

High volume samplers or medium volume samplers equipped with cellulose fibre filters or membrane filters are currently in use for collection of aerosol. The recommended analytical method for As, Cd, Cr, Cu, Ni, Pb, and Zn is ICP-MS; other analytical methods are mentioned in section 3.2.

In designing a sampling methodology the JAMP Guidelines for Sampling and Analysis of Mercury in Air and Precipitation¹⁰ and the JAMP Guidance Note on Sampling and Analysis of PCBs in Air and Precipitation¹¹ should be taken into account.

In general terms the detection limits of the measured contaminants should be well below the ambient levels by a factor of 10.

Knowledge of the particle size distribution is desirable for estimating dry deposition fluxes; size distribution forms an essential input parameter in transport/deposition models. Size distributions of heavy metal particles have been extensively studied with the help of cascade impactors. For routine monitoring cascade impactors are too expensive; a separation into two classes (cut-off at $2.5~\mu m$) is possible using commercially available samplers.

4.3. Sampling frequency

For heavy metals and POP in gas and aerosol phase a sampling period of 24h is recommended. When only a limited number of samples can be taken within a given time period (e.g. due to budgetary constraints) it is suggested to take one 24h sample every five or six days¹². In this strategy the number of samples to be analysed is limited to 70 or 60 annually; in this way, seasonal changes might be detectable and a reliable yearly averaged concentration will be obtained. In monitoring pesticides a higher frequency during the application period might be necessary.

See for an overview of sampling and analysing methods currently in use within Europe the report and proceedings of the workshop on the assessment of EMEP activities concerning Heavy Metals and Persistent Organic Pollutants and their further development, Moscow, Russian Federation, 24-26 September 1996; Report 117, Volumes I and II, World Meteorological Organisation, Global Atmospheric Watch, Geneva, Switzerland.

Adopted by ASMO 1997; final version (23 February 1998) circulated to Contracting Parties on 24 February 1998.

Adopted by ASMO 1997; final version (23 February 1998) circulated to Contracting Parties on 24 February 1998.

A sampling frequency of once per week should be avoided as this might introduce a systematic error. There is, for example, a clear difference in NO_x concentrations during the weekend and during working days. For heavy metals and POP such systematic differences can not be excluded a priori.

With respect to the nitrogen species, the gaseous compounds NO and NO_2 should be measured on a continuous base (aggregated to hourly averages before reporting); for the other N-compounds sampling period/frequency should not be less than 24h-average samples on a daily base.

5. Quality assurance

The low ambient concentrations of trace elements will easily cause wrong measurements if strict precautions are not taken to prevent contamination and other sources of errors. Quality assurance (QA) is therefore recognised as an essential component in air quality monitoring. Until now a quality assurance and quality control programme for the CAMP network has not been developed. It is strongly recommended to develop such a programme in close cooperation with other international monitoring networks (in particular, HELCOM, AMAP and EMEP)¹³. It is unlikely that full QA procedures will be established in the short term in all laboratories participating in CAMP. Nevertheless a minimum requirement, to ensure that comparable quality data is produced, must be established. This minimum program should include the following points:

- requirements on documentation of procedures for sampling and analysis;
- a training programme for the persons involved in the various tasks of the monitoring procedure;
- regular of analytical intercalibrations of prepared samples;
- field intercalibrations of sampling and analyses;
- implementation of an audit program where stations are visited by experts.

It is essential that all participating organisations agree a programme to introduce QA procedures (at least the minimum set given above) and make a commitment to their strict adherence.

6. Reporting Procedures

In accordance with the OSPAR/NILU Data Management Contract, Annex 1, as presented to INPUT(1) 1998 (cf. INPUT(1) 98/3/Info.1)¹⁴, Contracting Parties should submit, on a yearly base, CAMP data to the database manager (NILU, Kjeller, Norway) using a reporting format and according to the time schedule attached at Appendix 1. To allow data exchange and QA co-operation with EMEP, EMEP naming conventions should be used for organisation codes, station codes, field instrument references and sampling method references. In cases where the monitoring of components on the voluntary list is not performed, it would be useful if the Contracting Parties concerned could provide a short justification for not including these measurements in their national monitoring programmes.

Contracting Parties have to provide the database manager with one contact point (institutes and contact person) which is responsible for the monitoring activities on CAMP stations and which can serve as contact point for the exchange of information concerning

_

See e.g. the conclusions and draft recommendations of the EMEP-WMO workshop on data analysis, validation and reporting, Usti nad Labem (Czech Republic), 27-30 April 1997, UN-ECE.EB.AIR/GE.1/1997/7.

One recommendation of the workshop may need special attention: results from various field intercomparisons of heavy metal deposition showed large differences between deposition even from identical samplers close to each other. A strong reduction in uncertainties can be realised by parallel measurements with at least two identical samplers at one site. When two or more samplers are installed, procedures for detecting outliers and for reporting the measurements (e.g. is the averaged or median value reported) have to be defined.

Secretariat Note: details available from the OSPAR Secretariat on request.

monitoring data, atmospheric inputs of contaminants to the maritime area, methods of analysis of atmospheric contaminants and possible intercalibration activities.

6.1. Additional requirements on information of monitoring stations¹⁵

For a proper evaluation of the monitoring results the following (meta) information on the station should be supplied to the database manager:

- station name and station code;
- organisation responsible for operation of the station and name of contact person;
- co-ordinates; clearly indicate whether co-ordinates are given in degrees-minutes-seconds or in degrees and decimal units;
- altitude: height of the station above sea level (m);
- start date: date on which the station became operational;
- description of station environment: describe the siting of the station (e.g. located in a nature area, an agricultural area mainly with intensive cattle breeding);
- description of main emission sources: describe the nearest pollution sources (e.g. nearest city is Leyden (150,000 inhabitants, 15 km in southern direction);
- meteorological parameters measured at the station in addition to air contaminants;
- prevailing meteorological conditions (e.g. wind rose).

For each component the following information on the measurement configuration is needed:

- · component;
- for automatic devices: name/type/version of monitor and measurement technique;
- for manual or semi-automatic devices: name/type of equipment to obtain sample, analytical principle used;
- calibration method, frequency of calibration;
- integration time of results;
- height of sampling point above surface;
- length of sampling line;
- whether the sampling line is heated;
- start/end date of configuration.

An organisation is defined as the operator of a station and the owner of a field instrument. The organisation code has the form NL01L (the last L declares that this organisation is a laboratory, and it is laboratory 1 in the Netherlands). Station number 3 in the Netherlands will have the code NL0003R (4 digit number, + the code R for regional background station). The organisation may have bulk samplers operated at several stations. We need to relate the sampler to the organisation with a reference like NL01L_bu1. A reference in this context is always constructed by the organisation code, an underscore character, and a name (the name only needs to be unique within the organisation that creates it, the

¹⁵ A preliminary list of requested items is presented here. Contents, units and formats will be specified in detail by the data base manager in the call for meta-information and monitoring data.

reference will then be unique world-wide). Also method references are created in the same manner.

7. Calculation of long-term averaged concentrations

7.1 Precipitation

The yearly averaged concentration in precipitation, \overline{C} , should be estimated by precipitation amount weighted averaging of the concentrations for each of the sampling periods:

$$\overline{C} = \frac{\sum_{i=1}^{N} P_i C_i}{\sum_{i=1}^{N} P_i}$$
 [1]

where N is the number of sampling periods in one year, P_i is the precipitation amount and C_i is the reported concentration in period i.

When the concentration in a period (or part of a period) is below the measurement limit of detection (DL), the value may be reported:

- 1. as the observed value or computed average with the flag 0.000, if an insignificant number of input elements are non-numeric (less than 25% missing or below the detection limit). For non-continuous instruments or samplers the value must be positive and above the detection limit, for continuous monitors the value may be below the noise level or may be negative (close to zero).
- 2. as an estimate with the flag 0.780 if a significant number of input elements (between 25% and 50%) are missing or below the detection limit. The estimate may be negative for continuous monitors, it may be below the detection limit (but positive) for noncontinuous instruments.
- 3. as BDL (below detection limit), where the flag is 0.781 and the value contains the detection limit (no valid numerical value is available in this case). This can also be used for aggregates where 50% or more of the input elements are missing or BDL.
- 4. as missing with the flag 0.999 if 50% or more of the input elements are missing or BDL (the data originator, knowing his instrument, method and the typical variations in the signal, must decide whether missing or BDL is the most correct result).

It is recommended to report the actual measured value (method 1) with a clear indication of the DL (e.g. in parentheses). When the measurement technique does not permits this, the measurements should be flagged as *below detection limit*. In the framework of EMEP and HELCOM a reporting format including instructions for exception flagging (e.g. missing data, data below detection limit) has been adopted by these organisations¹⁶. It is recommended to follow similar procedures in reporting CAMP data.

When data coverage is less then 75% no reliable yearly average concentration can be calculated. During evaluation of data coverage concentrations below detection limit should be seen as *missing data*. In the evaluating of averages, the actual observed values

_

See Krognes T, Gunstrøm T.Ø. and Schaug J. (1995) Air Quality databases at NILU. EBAS version 1.01. Report TR3/95, NILU, Kjeller, Norway.

are used for data below detection limit; when only a flag *below detection limit* is reported, a value of 50% of the reported detection limit¹⁷ is used in the averaging procedure, eq [1].

7.2 Ambient air and aerosol

The monthly averaged concentration in air or aerosol, \overline{C}_m , is estimated by numerical averaging of the concentrations for each of the sampling periods:

$$\overline{C}_m = \frac{1}{N} \sum_{i=1}^{N} C_i$$
 [2]

where N is the number of sampling periods in one month, and C_i is the concentration in period i.

When the concentration in a period is below the measurement limit of detection (DL), the actual measured value should be reported with a clear indication of the DL (e.g. in parentheses), see the discussion above on precipitation data. When the measurement technique does not permits this, the measurements should be flagged as *below detection limit*.

When data coverage is less then 50% no reliable monthly average concentration can be calculated. During evaluation of data coverage concentrations below detection limit should be seen as *missing data*. In the evaluating of averages, the actual observed values are used for data below detection limit; when only a flag *below detection limit* is reported, a value of 50% of the reported detection limit is used in the averaging procedure, eq [2]. A yearly averaged concentration is obtained by averaging the monthly concentrations; at least nine monthly values (75%) should be available.

8. Methodology for assessment of atmospheric inputs

The atmospheric input is a mass of a contaminant carried to the maritime area via the atmosphere. Total deposition consists of the sum of wet and net dry deposition; for (semi)-volatile compounds the net dry deposition term includes the mass which has re-volatilised from the sea surface¹⁸.

Although the location of CAMP monitoring stations has been carefully selected and measurements are not directly influenced by inland sources, the atmospheric input to the marine area can not be calculated directly from the (land-based) measurements. For several reasons deposition estimates based on averaging the deposition flux over all monitoring stations will be in error:

- As sources of contaminants are mainly land-based one can expect that the
 concentrations in the more remote parts of the Convention waters will be lower than at
 coastal stations; the use of coastal data might lead to an overestimation of atmospheric
 inputs.
- For (semi)-volatile POP the dry deposition estimates based on ambient data will not include the effect of re-volatilisation.

In earlier discussions on this point in the former ATMOS working group, a factor of 2/3 has been introduced. In agreement with the procedures of EMEP and HELCOM here a factor of 1/2 is recommended.

Note that the net dry deposition term might be negative. This might be the case when some material which entered the maritime system by other pathways (e.g. wet deposition, riverine input, direct dumping) re-volatises.

- It is generally assumed that precipitation amounts at open sea are lower than at nearby land areas; the use of coastal precipitation data might lead to an overestimation of atmospheric inputs. Precipitation rates at coastal stations are extremely variable; for example, coastal stations in the United Kingdom have generally less precipitation than the stations in Norway, most probably due to orographic effects. To take this into account, and to correct for the smaller precipitation amount at open sea, a method which allows variable amounts of precipitation to be used based on 70% of the median values for coastal stations has been proposed for estimation of inputs to the North Sea.
- The CAMP monitoring stations are not regularly spaced along the coast line of the maritime area. For example, for the North Sea an averaging of deposition fluxes measured at coastal stations may over-estimate the atmospheric input due to the relatively higher network density in the southern, more polluted part of the North Sea. Other interpolation methods e.g. by inverse distance weighting, may overcome this problem but any concentration gradients from land to sea due to removal processes or due to dilution (the first point discussed above) is still not accounted for.

Since in the CAMP-network measurements are available on a monthly or 4-weekly basis only, it is not possible to separate on-shore and off-shore winds and estimate direction dependent concentrations. However, it is possible to apply a bulk gradient correction factor for each station derived from calculation with an atmospheric transport model. These *dispersion factors* f(i) are defined as the ratio of the modelled deposition flux at station i to the modelled deposition flux at the Convention Waters as a whole or subregions of it. This model-based dispersion factor can now be applied to extrapolate the measured deposition at the coastal station to the whole North Sea area and/or its subregions; total deposition is calculated by:

$$d_{(wet+dry)} = A \frac{\sum_{i=1}^{i=n_w} C_w(i) pa_{land} f_w(i)}{n_w} + A \frac{\sum_{i=1}^{i=n_a} C_a(i) v_d t f_a(i)}{n_a}$$
[3]

where A is the total area of the North Sea (525,000 km²) and/or sub-regions, n_w the number of stations with wet deposition measurements, n_a the number of stations with air concentrations measurements, v_d is the dry deposition velocity, t is the length of the period considered (here one year = 365*24*3600 s), $C_w(i)$ the weighted mean concentration in precipitation, pa_{land} is the precipitation amount and $C_a(i)$ the mean concentration in air at station i. $f_w(i)$ and $f_a(i)$ represent the dispersion factors for wet and dry deposition, respectively as calculated by the RIVM/TREND model As discussed above it is suggested to take for pa_{land} the median precipitation value of all the stations rather than using station specific precipitation amounts.

This procedure described above is the so-called Method 3a, more details can be found in Oslo and Paris Commissions (1994) Calculation of Atmospheric inputs of contaminants to the North Sea, 1987-1992.

9. Changes in methodology

If in future surveys there are significant changes of methodology of sampling or analysis, these should be reported to the Secretariat by Contracting Parties, together with any reassessment of previously reported data.

Time schedule and data reporting format

Time schedule

Data measured in one calendar year should be reported in the next year according to the following time schedule:

1 st April	Call for metadata issued from NILU (regarding both historic and new metadata), with instructions and supporting software as indicated in section 6.
1 st June	Participants submit metadata via internet or on diskette, in specified formats.
31 st August	Participants submit data via internet or on diskette, in specified formats. Transfer files shall have been checked with software supplied from NILU.
30 th September	Draft report submitted from NILU, based on data submissions that have passed the formatting and consistency checks.
30 th October	Participants submit completed/corrected data and metadata via internet or on diskette.
30 th November	NILU submits final data report. This will probably also serve as output to the participants for the final validation of the data.

Data reporting format

Data reporting format of data deliverance is in accordance with the terms of the OSPAR/NILU CAMP Data Management Contract.

Appendix C Description of NASA/Ames files

The NASA/Ames 1001 format has been extensively adopted around the world after its development by NASA. Here, a brief guide is given to the structure and information required in the form it is used by NILU. Accompanying this 4-page description is a list of components on page 65, a list of instrument code names on page 66, a list of data flags on page 67 and an example completed NASA/Ames file on page 69.

For stationary monitoring points the file format consists usually of 40 line initial lines containing qualifying information - metadata - followed by one line for each data point, defined as follows:

Line no.	variable	value	comment
1	NLHEAD	40 1001	Number of header and metadata lines before the data (40), plus NASA/Ames version no. (1001).
2	ONAME	e.g. Barrett Kevin	Name of data originator, i.e. person responsible for providing data, surname first, max. 132 characters.
3	ORG	e.g. NO01L, NILU, Box 100, N-20	27, Kjeller, Norway Registered organisation or laboratory code with O or L suffix to which data originator is affiliated (contact NILU for new institutions), separated by a comma from name, address, telephone, etc.
4	SNAME	e.g. Hjellbrekke Anne-Gunn	Person submitting/posting data file to database, surname first, max. 132 characters. May be the same as line 2, or can be another operator.
5	MNAME	e.g. CAMP(insert) EMEP(insert)	Mission/project name. If more than one project is to use the data, these are separated by spaces. An action must be specified, in this case "insert". This is used for new datasets. If a dataset is being updated, rather than entered for the first time the action is "update".
6	IVOL NVOL	1 1	Used to manage data. Always set to 1 1.
7	DATE RDATE	e.g. 1999 01 01 2000 04 01	
			DATE is the starting date for data file in YYYY MM DD, with year, month and day each separated by a space. Normally set to 1st January when 1 year of data is included, 1st January or 1st July when 6 months of data are included, or 1st month when 1 month of data is included. RDATE is latest date of data revisions or corrections
8	DX(1)	e.g. 1	Time units between data points for regular time series data, units as defined in line 9, XNAME. For example, for daily data points when XNAME is given as "days from file reference point", DX = 1 For hourly data when XNAME is given as "days", DX = fractional Julian day, i.e. $0.041667 (1/24)$. For hourly data when XNAME is defined as "hours from file reference point", DX = 1 For irregular time series data, e.g. monthly data where the number of days varies, DX = 0
9	XNAME(1)	e.g. days from file reference point	Description of the units and start time of each data point.
10	NV	e.g. 3	Number of variables/columns of data <u>in addition</u> to the start time, i.e. no. dependent variables. For fixed monitoring points this will typically be 3 - in addition to start time there is end time, data value and data flag. Other cases could include multiple

			mast measurements with further columns for heights.
11	VSCAL(n), n=1,NV	e.g. 1 1 1	Variable scalar(n), the factor by which each of the dependent elements must be multiplied to convert to correct units. Always use 1 for each.
12	VMISS(n), n=1,NV	e.g. 999 9999.9 9.999	The missing data label for each data element. Created by filling all digits in data format with 9. Number of decimals will vary according to resolution of reported data. The VMISS values will be entered in the data columns when data points are missing. This does not apply to the flag column for which a valid flag can always be assigned.
13	VNAME(n) n=1,NV	e.g. end_time, Julian date counted	from the file reference point
(14)		e.g. value, mm	
(15)		e.g. numflag, no unit, max 3 flags(o	Variable name and description for each of the dependent variables, each listed on a separate line with max 132 characters. start-time is the independent variable, and is NOT declared. end_time, is the first dependent variable and must be defined with units. value is the second dependent variable (3rd column) and must be labelled with units. Units will change with component. numflag is the third dependent variable, and has no units. A list of flags is available on www.nilu.no/projects/ccc/flags.html, copied below.
16	NSCOML	e.g. 0	Number of special comment lines for data set. Special circumstances concerning this particular data file. If no comments then NSCOML = 0
	[SCOM(n), n=1,NSCOML]		Comment lines. If NSCOML = 0, no comment lines will be given, and NNCOML will follow NSCOML.
17	NNCOML	23	Number of normal comment lines to follow from here, before the data components. In the CAMP format 23 lines now follow before the data set.
18	Data definition:	EBAS_1	Does not vary.
19	Set type code:	e.g. TI	Here TI means time series, irregular. Thepossible set type codes are: TI: Irregular time series (variable increment in time, fixed position) TU: Uniform time series (constant increment in time, fixed position) SU: Spatial Uniform time series (constant increment in time, changing position with constant or variable increments) SI: Spatial Irregular time series (variable increment in time, changing position with constant or variable increments) PO: Position-related snapshot (point samples in varying positions at common time point) AR: Area-related snapshot (averages for named areas at common time point) GR: Grid-related snapshot (averages for indexed grid squares at common time point) GS: Grid-related snapshot (averages for indexed boxes in a 3-D grid at common time point) CO: Column data (LIDAR, sun-spectrometers, etc)

20	Regime:	IMG	Represents Imission, ground level/lower troposphere. Alternatives refer to emissions or model results. In CAMP, Regime is always IMG.
21	Station code:	e.g. NO0001R	Station code consists of the nation code, station sequence number, and station type code. In this example we have: Norwegian station 0001, Regional background. Possible station suffixes are: R regional background G global background U urban I industrial Contact NILU if a new station is to be used.
22	Platform code:	e.g. NO0001S	Introduced in CAMP/HELCOM/EMEP/AMAP to distinguish between Stationary or Mobile platforms at a station. Consists of nation code, sequence number and suffix S or M
23	Startdate:	e.g. 19990101	Indicates the start date for data, the variable DATE given previously in line 7, but without spaces, i.e. YYYYMMDD.
24	Timeref:	e.g. 08_00	Indicates the time of sample changes, Format is hour_minute.
25	Revision date:	e.g. 20000401	Indicates latest data revision date, the variable RDATE given previously in line 7, but without spaces, i.e. YYYYMMDD.
26	Component:	e.g. precipitation_amount	component name. Select from list on CAMP2000A CD, and repeated below, and spell exactly.
27	Unit:	e.g. mm	unit for component, matrix and regime. Select from list (CAMP2000A CD and below).
28	Matrix:	e.g. precip	choice between: precip air aerosol air+aerosol Component/matrix list below clarifies options.
29	Period code:	e.g. ly	Reporting period. Choices are: 1mo: 1 month 6mo: 6 months 1y: 1 year (12 months)
30	Resolution code:	e.g. 1mo	Resolution of reported data. Choices are:
	code.		1h: 1 hour resolution 1d: 1 day resolution 1w: 1 week resolution 2w: 2 week resolution 4w: 4 week resolution 1mo: 1 month resolution
31	Laboratory code:	e.g. NO01L	The laboratory which produced measurement results. Consists of nation code, sequence number, and the suffix L. Contact NILU for new laboratories.
32	Instrument type:	e.g. bulk_sampler	Instrument type. Select from list on CAMP2000A CD and repeated below.
33	Instrument name:	e.g. BS14	Assign short name which is unique in the organisation, and including numbers or letters that may be incremented as new instruments are acquired. Do not alter a name, or re-use names from earlier instruments taken out of service in the

			organisation. Do not include organisation code or instrument type. The example BS14 may indicate "bulk sampler, 14".
34	Method ref:	e.g. NO01L_precip1a	Add a unique, short, name for each method description, to the end of the organisation code in line 3.
35	Ext. lab. code:	e.g. NA	Use if external laboratory undertakes analysis. Otherwise use NA (not applicable)
36	Ext. meth. ref:	NA	Use if external laboratory undertakes analysis. Otherwise use NA (not applicable)
37	Add. qualifier	e.g. 1d	Insert sampling resolution, if different from reported Resolution Code, line 30.
38	File name:	e.g. TI.IMG.NO0001R.NO0001S.19990	0101.2000.04.01.precipitation_amount.precip.1y.1mo Indicates location, dates, component and time resolution
39	File name ext:	e.gNO01L.bulk_sampler.BS14.N	O01L_precip1a.NA.NA.1d Indicates laboratory and methods. Both File name and File name ext. are constructed from the metadata elements as shown.
40		Start_time end_time value	numflag Title line of data set. Independent variable listed first (start_time) followed by the dependent variables VNAME in line 13.

MATRIX COMPONENT aerosol acidity ne H/m3 aerosol aduninium aerosol aluminium aerosol aluminium aerosol aluminium aerosol aluminium aerosol aromonium aerosol adunium aerosol cadrium aerosol cadrium aerosol cadrium aerosol calcium aerosol calcium aerosol chioride aerosol cooper aerosol cooper aerosol copper aerosol lead ng/m3 air+aerosol benzo_b_fluoranthenes aerosol lead ng/m3 air+aerosol benzo_b_fluoranthene aerosol magnesium aerosol magnesium aerosol magnesium aerosol magnesium aerosol nickel ng/m3 aerosol nickel ng/m3 air+aerosol benzo_b_fluoranthene aerosol nickel aerosol nickel aerosol nickel aerosol nitzate aerosol nitzate aerosol selentium ag/m3 air+aerosol aerosol selentium aerosol sodium aerosol sodium ag/m3 aerosol sodium aerosol susp_part_matter aerosol vanadium ng/m3 air+aerosol cononee aerosol vanadium ng/m3 air+aerosol dibenzo_fc_pyrene dibenzo_fc_nanatere aerosol vanadium ng/m3 air+aerosol dibenzo_fc_nanatere aerosol vanadium ng/m3 air+aerosol dibenzo_fc_nanatere aerosol vanadium aerosol dibenzo_fc_nanatere aerosol vanadium aerosol dibenzo_fc_nanatere aerosol dibenzo_fc_nanatere aerosol dibenzo_fc_nanatere aerosol vanadium aerosol magnesa aerosol dibenzo_fc_nanatere aerosol dibenzo_fc_nanatere aerosol dibenzo_fc_nanatere aerosol dibenzo_fc_nanatere aerosol dibenzo_fc_nana	UNIT pp/m3 ng/m3
aerosol alminium ng/m3 air+aerosol anthrathrene aerosol armonolum ug/m3 air+aerosol anthracene aerosol arsenic ng/m3 air+aerosol benzo_a_fluoranthene aerosol cadmium ng/m3 air+aerosol benzo_a_fluoranthene aerosol cadmium ng/m3 air+aerosol benzo_a_fluoranthene aerosol calcium ug/m3 air+aerosol benzo_a_fluoranthene aerosol calcium ug/m3 air+aerosol benzo_a_pyrene aerosol chloride ug/m3 air+aerosol benzo_a_pyrene aerosol chordium ng/m3 air+aerosol benzo_a_pyrene aerosol chordium ng/m3 air+aerosol benzo_b_fluoranthene aerosol cobatt ng/m3 air+aerosol benzo_b_fluoranthene aerosol copper ng/m3 air+aerosol benzo_b_fluoranthenes aerosol lead ng/m3 air+aerosol benzo_b_fluoranthene aerosol magnesium ug/m3 air+aerosol benzo_e_pyrene aerosol magnesium ug/m3 air+aerosol benzo_gni_perylene aerosol magnese ng/m3 air+aerosol benzo_gni_perylene aerosol nitrate ug/m3 air+aerosol benzo_gni_perylene aerosol nitrate ug/m3 air+aerosol benzo_gni_perylene aerosol nitrate ug/m3 air+aerosol biphenryl aerosol nitrate ug/m3 air+aerosol cis_CO aerosol solatum ug/m3 air+aerosol cis_CO aerosol suspnat_matter ug/m3 air+aerosol cis_CO aerosol suspnat_matter ug/m3 air+aerosol deledrin air CFC_11 pptv air+aerosol deledrin air CFC_12 pptv air+aerosol deledrin air CFC_12 pptv air+aerosol inden_123od_pyrene air NZbutanne ug/m3 air+aerosol inden_123od_pyrene air NZbutanne ug/m3 air+aerosol inden_123od_pyrene air NZbutanne pptv air+aerosol inden_123od_pyrene air NZbutanne ug/m3 air-aerosol pen_aerosol pen_aero	ng/m3
aerosol arsenic ng/m3 air+aerosol anthracene aerosol arsenic ng/m3 air+aerosol black_carbon ug/m3 air+aerosol black_carbon ug/m3 air+aerosol benzo_a_fluoranthene aerosol caclum ug/m3 air+aerosol benzo_a_fluoranthene aerosol caclum ug/m3 air+aerosol benzo_a_fluoranthene aerosol caclum ug/m3 air+aerosol benzo_a_fluoranthene aerosol chloride ug/m3 air+aerosol benzo_b_fluoranthene aerosol chloride ug/m3 air+aerosol benzo_b_fluoranthene aerosol cobalt ng/m3 air+aerosol benzo_b_fluoranthene aerosol cobalt ng/m3 air+aerosol benzo_b_fluoranthene aerosol cobalt ng/m3 air+aerosol benzo_b_fluoranthene aerosol lead ng/m3 air+aerosol benzo_b_fluoranthene aerosol magnesium ug/m3 air+aerosol benzo_b_fluoranthene aerosol magnesium ug/m3 air+aerosol benzo_g_ni_fluoranthene aerosol magnese ng/m3 air+aerosol benzo_g_ni_fluoranthene aerosol magnese ng/m3 air+aerosol benzo_g_ni_fluoranthene aerosol nilckel ng/m3 air+aerosol benzo_g_ni_fluoranthene aerosol selenium ng/m3 air+aerosol cis_CO aerosol solum ng/m3 air+aerosol dibenzofuran aerosol solum ng/m3 air+aerosol dibenzofuran aerosol zinc ng/m3 air+aerosol dibenzofuran aerosol zinc ng/m3 air+aerosol dibenzofuran aerosol dibenzofuran aerosol zinc ng/m3 air+aerosol dibenzofuran aerosol dibenzofuran aerosol dibenzofuran aerosol dibenzofuran aerosol dibenzofuran aerosol ng/m3 air+aerosol dibenzofuran aerosol ng/m3 air+aerosol inden_123cd_pyrene air Nzbutenal ug/m3 air+aerosol pphoto ng/m3 air+aerosol pphoto ng/m3 air+aerosol pphoto ng/m3 air+aerosol pphoto ng/m3 air+aerosol pphoto	ngima ngima
aerosol black_cathon ug/m3	ng/m3
aerosol cadmium cadmium camp cadmium camp cadmium camp cadmium camp cadmium camp	ng/m3
aerosol calcium ug/m3 air+aerosol benzo_a_pyrene	ng/m3
aerosol chloride ug/m3 air+aerosol benzo_b_fluoranthene aerosol chromium ng/m3 air+aerosol benzo_b_fluoranthene aerosol cobalt ng/m3 air+aerosol benzo_b_fluoranthenes aerosol copper ng/m3 air+aerosol benzo_e_pyrene aerosol lead ng/m3 air+aerosol benzo_e_pyrene aerosol lead ng/m3 air+aerosol benzo_e_pyrene aerosol magnesium ug/m3 air+aerosol benzo_e_pyrene aerosol magnanese ng/m3 air+aerosol benzo_e_pyrene aerosol magnanese ng/m3 air+aerosol benzo_e_pyrene aerosol mercury pg/m3 air+aerosol benzo_e_pyrene aerosol nickel ng/m3 air+aerosol benzo_e_pyrene aerosol nickel ng/m3 air+aerosol benzo_e_pyrene aerosol nitrate ug/m3 air+aerosol chrysene_riphenylene aerosol nitrate ug/m3 air+aerosol cis_CD aerosol sodium ug/m3 air+aerosol cis_CD aerosol sodium ug/m3 air+aerosol cis_NO aerosol sodium ug/m3 air+aerosol coronene coronene coronene aerosol susp.part_matter ug/m3 air+aerosol coronene coronene aerosol susp.part_matter ug/m3 air+aerosol dibenzo_ac_a_n_anthracenes aerosol susp.part_matter ug/m3 air+aerosol dibenzo_ac_a_n_anthracenes aerosol zinc ng/m3 air+aerosol inden_123od_pyrene aerosol ng/m3 air+aerosol inden_123od_pyrene aerosol ng/m3 air+aerosol inden_123od_pyrene aerosol ng/m3 air+aerosol inden_123od_pyrene aerosol	ng/m3
aerosol cobalt ng/m3	ng/m3
aerosol lead ng/m3 air+aerosol benzo_e_pyrene aerosol lead ng/m3 air+aerosol benzo_e_ni_pursanthene aerosol magnesium ug/m3 air+aerosol benzo_e_ni_pursanthene aerosol marganese ng/m3 air+aerosol benzo_e_ni_perylene aerosol marganese ng/m3 air+aerosol benzo_e_ni_perylene aerosol marganese ng/m3 air+aerosol benzo_e_ni_perylene aerosol nickel ng/m3 air+aerosol biphenyl aerosol nitrate ug/m3 air+aerosol biphenyl aerosol polassium ug/m3 air+aerosol cis_CD aerosol polassium ug/m3 air+aerosol cis_CD aerosol selenium ng/m3 air+aerosol cis_NO aerosol sodium ug/m3 air+aerosol coronene aerosol subp_part_matter ug/m3 air+aerosol cyklopenta_cd_pyrene aerosol susp_part_matter ug/m3 air+aerosol dibenzoluran aerosol zinc ng/m3 air+aerosol dibenzoluran air CFC_11 pptv air+aerosol dibenzoluran air CFC_12 pptv air+aerosol fluoranthene air HCFC_123 pptv air+aerosol dimenzoluran air NZbutanne ug/m3 air+aerosol naphtalene air NZbutanne pptv air+aerosol naphtalene air NZbutanne pptv air+aerosol naphtalene air NZmethylpentane pptv air+aerosol naphtalene air NZmethylpentane pptv air+aerosol naphtalene air NZmethylpentane pptv air+aerosol pptvene	ng/m3
aerosol lead ng/m3 air+aerosol benzo_gni_fluoranthene benzo gni_fluoranthene benzo_gni_fluoranthene benzo_gni_fluoranthene benzo_gni_perylene aerosol manganese ng/m3 air+aerosol benzo_gni_perylene benzo_gni_perylene aerosol mercury pg/m3 air+aerosol benzo_gni_perylene benzo_gni_perylene aerosol nickel ng/m3 air+aerosol beta_HCH biphenyl biphenyl biphenyl aerosol nickel ug.N/m3 air+aerosol chysene_triphenylene aerosol selenium ng/m3 air+aerosol chysene_triphenylene aerosol selenium ng/m3 air+aerosol cis_CD aerosol selenium ug/m3 air+aerosol coronene cyklopenia_cd_pyrene derosol sulphate_total ug.S/m3 air+aerosol cronene cyklopenia_cd_pyrene derosol susp_part_matter ug/m3 air+aerosol dibenzo_ga_gn_anthracenes aerosol susp_part_matter ug/m3 air+aerosol dibenzo_ga_gn_anthracenes derosol susp_part_matter ug/m3 air+aerosol dibenzo_ga_gn_anthracenes derosol zinc ng/m3 air+aerosol dibenzo_ga_gn_anthracenes dibenzo_gn_anthracenes dibenzo_	ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 pg/m3 ng/m3
aerosol magnesium ug/m3 air+aerosol benzo_ghi_penylene aerosol mercury pg/m3 air+aerosol benzo_lt_fluoranthene aerosol nickel ng/m3 air+aerosol beta_lt_CH aerosol nitrate ug/m3 air+aerosol chysene_triphenylene aerosol polassium ug/m3 air+aerosol cis_CD aerosol selenium ng/m3 air+aerosol cis_CD aerosol sodium ug/m3 air+aerosol coronene aerosol subphate_tofal ug/sm3 air+aerosol cyklopenta_cd_pyrene aerosol susp_part_matter ug/m3 air+aerosol dibenzo_rac_ah_anthracenes aerosol zinc ng/m3 air+aerosol dibenzo_rac_ah_anthracenes aerosol zinc ng/m3 air+aerosol dibenzorturan aerosol zinc ng/m3 air+aerosol diedrim air CFC_11 pptv air+aerosol diedrim air CF	ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 pg/m3 ng/m3
aerosol manganese ng/m3 air+aerosol benzo_k_fluoranthene	ng/m3 pg/m3 ng/m3 ng/m3 pg/m3 pg/m3 ng/m3
aerosol mercury pg/m3 air+aerosol beta_HCH	pg/m3 ng/m3 ng/m3 pg/m3 pg/m3 ng/m3
aerosol nickel ng/m3 air+aerosol bipheryl aerosol nitrate u.g. Mm3 air+aerosol chysene_triphenylene aerosol potassium u.g/m3 air+aerosol cis_CD aerosol selenium u.g/m3 air+aerosol cis_CD aerosol sodium u.g/m3 air+aerosol cis_NO aerosol susp_part_matter u.g/m3 air+aerosol dibenzo_ca_h_anthracenes aerosol vanadium n.g/m3 air+aerosol dibenzoturan aerosol zinc n.g/m3 air+aerosol dibenzoturan aerosol zinc n.g/m3 air+aerosol dibenzoturan air CFC_11 pptv air+aerosol dibenzoturan air CFC_113 pptv air+aerosol dibenzoturan air CFC_12 pptv air+aerosol diuoranthene air HCFC_22 pptv air+aerosol fluoranthene air NZbutenal u.g/m3 <	ng/m3 ng/m3 pg/m3 pg/m3 ng/m3
aerosol potassium ug/m3 air+aerosol cis_CD aerosol selenium ng/m3 air+aerosol cis_NO aerosol sudjuntale_total ug/m3 air+aerosol coronene aerosol susp_part_matter ug/m3 air+aerosol dbenzoluza aerosol vanadium ng/m3 air+aerosol dbenzofuran aerosol zinc ng/m3 air+aerosol dbenzofuran air CFC_11 pptv air+aerosol delerzofuran air CFC_113 pptv air+aerosol duoranthene air HCFC_133 pptv air+aerosol fluoranthene air HCFC_123 pptv air+aerosol gamma_HCH air NZbutanne ug/m3 air+aerosol inden_123cd_pyrene air NZbutenal ug/m3 air+aerosol naphtalene air NZmethybenzencarbaldehyde ug/m3 air+aerosol npDE air NZmethypentane pptv air	pg/m3 pg/m3 ng/m3
aerosol selenium ng/m3 ai+aerosol cis_NO aerosol sodium ug/m3 ai+aerosol coronane aerosol sulphate_total ug S/m3 ai+aerosol cyklopenta_cd_pyrene aerosol susp_part_matter ug/m3 ai+aerosol dibenzo_ac_ah_anthracenes aerosol vanadium ng/m3 ai+aerosol dibenzo_ac_ah_anthracenes aerosol zinc ng/m3 ai+aerosol dibenzo_toran aerosol zinc ng/m3 ai+aerosol dibenzo_toran air CFC_11 pptv ai+aerosol dibenzothiophene air CFC_12 pptv air+aerosol dibenzothiophene air CFC_12 pptv air+aerosol fluoranthene air HGFC_123 pptv air+aerosol fluorene air HGFC_22 pptv air+aerosol gamma_HGH air HGFC_22 pptv air+aerosol inden_123od_pyrene air Nzbutanone ug/m3 air+aerosol mercury air Nzbutenal ug/m3 air+aerosol mercury air Nzbutenal ug/m3 air+aerosol naphtalene air Nzmethylpenzencarbaldehyde ug/m3 air+aerosol op_DDD air Nzmethylpentane pptv air+aerosol op_DDE air Nzmethylpentane ug/m3 air+aerosol op_DDE air Nzmotyropenal ug/m3 air+aerosol phenanthrene air Nzpropenal ug/m3 air+aerosol phenanthrene air Nzbuteneone ug/m3 air+aerosol phenanthrene air Nzpropenal ug/m3 air+aerosol phenanthrene	pg/m3 ng/m3
aerosol sodium ug/m3 air+aerosol coronene aerosol subp.bate_total ug/m3 air+aerosol cyklopenta_cd_pyrene aerosol susp_part_matter ug/m3 air+aerosol dibenzoluran aerosol zinc ng/m3 air+aerosol dibenzoluran aerosol zinc ng/m3 air+aerosol dibenzoluran air CFC_11 pptv air+aerosol deldrin air CFC_13 pptv air+aerosol fluoranthene air HCFC_123 pptv air+aerosol fluoranthene air HCFC_22 pptv air+aerosol inden_123od_pyrene air NZbutanne ug/m3 air+aerosol mecury air NZbutenal ug/m3 air+aerosol naphtalene air NZmethybentane ptv air+aerosol op_DDC air NZmethybentane ptv air+aerosol op_DDE air NZmethypentane ptv air+aerosol <td>ng/m3 ng/m3 ng/m3</td>	ng/m3
aerosol sulphate_total ug S/m3 air+aerosol cyklopenta_cd_pyrene aerosol susp_part_matter ug/m3 air+aerosol diberazo_ac_ah_anthracenes aerosol vanadium ng/m3 air+aerosol diberazo_ac_ah_anthracenes aerosol zinc ng/m3 air+aerosol diberazo_ac_ah_anthracenes air cFC_11 pptv air+aerosol diberazo_ac_ah_anthracenes air cFC_113 pptv air+aerosol diberazo_ac_ah_anthracenes air cFC_12 pptv air+aerosol diberazo_ac_ah_anthracenes air HcFC_123 pptv air+aerosol fluoranthene air HcFC_123 pptv air+aerosol fluorene air HcFC_22 pptv air+aerosol gamma_HcH air Nzbutanone ug/m3 air+aerosol inden_123od_pyrene air Nzbutanone ug/m3 air+aerosol mercury air Nzbutenal ug/m3 air+aerosol naphtalene air Nzmethytpenzencarbaidehyde ug/m3 air+aerosol naphtalene air Nzmethytpenal ug/m3 air+aerosol op_DDC air Nzmethytpenal ug/m3 air+aerosol phenanthrene air Nzpropenal ug/m3 air+aerosol phenanthrene	ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 pg/m3 pg/m3
aerosol susp_part_matter ug/m3 air+aerosol dibenzo_ac_ah_antracenes aerosol zinc ng/m3 air+aerosol dibenzo_tran aerosol zinc ng/m3 air+aerosol dibenzo_trican air CFC_11 pt/v air+aerosol diedrim air CFC_113 pt/v air+aerosol fluoranthene air CFC_12 pt/v air+aerosol fluoranthene air HCFC_123 pt/v air+aerosol gamma_HCH air NEVatianne ug/m3 air+aerosol inden_123od_pyene air NZbutenal ug/m3 air+aerosol naphtalene air NZmethylpenzencarbaldehyde ug/m3 air+aerosol op_DDD air NZmethylpentane pt/v air+aerosol op_DDE air NZmethylpenzencarbaldehyde ug/m3 air+aerosol op_DDE air NZmethylpenzencarbaldehyde ug/m3 air+aerosol op_DDE air NZmethylpenzencarbaldehyde<	ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 pg/m3 ng/m3
aerosol zinc ng/m3 air+aerosol dibenzothiophene air CFC_11 pptv air+aerosol diedrin air CFC_123 pptv air+aerosol fluoranthene air HCFC_123 pptv air+aerosol gamma_HCH air HCFC_22 pptv air+aerosol inden_123od_pyrene air NZbutanone ug/m3 air+aerosol mecrury air NZbutenal ug/m3 air+aerosol naphtalene air NZmethybenzencarbaldehyde ug/m3 air+aerosol op_DDC air NZmethypentane pptv air+aerosol op_DDC air NZmethypenpenal ug/m3 air+aerosol op_DDT air NZpropenal ug/m3 air+aerosol penytene air NZpropenal ug/m3 air+aerosol phenanthrene air NZbuben2one ug/m3 air+aerosol phenanthrene	ng/m3 ng/m3 ng/m3 ng/m3 pg/m3 ng/m3
air CFC_113 pptv air+aerosol dieldrin air CFC_113 pptv air+aerosol fluoranthene air CFC_12 pptv air+aerosol fluoranthene air HCFC_123 pptv air+aerosol gamma_HCH air HCFC_22 pptv air+aerosol inden_123cd_pyrene air N2butanone ug/m3 air+aerosol mercury air NZbutenal ug/m3 air+aerosol op_DDD air NZmethylpenzencarbaldehyde ug/m3 air+aerosol op_DDD air NZmethylpropenal ug/m3 air+aerosol op_DDT air NZmethylpropenal ug/m3 air+aerosol perylene air NZpropenal ug/m3 air+aerosol phenanthrene air NZpuber2one ug/m3 air+aerosol phenanthrene	ng/m3 ng/m3 ng/m3 pg/m3 ng/m3
air CFC_113 pptv air+aerosol fluoranthene air CFC_12 pptv air+aerosol fluorene air HCFC_123 pptv air+aerosol gamma_HCH air HCFC_22 pptv air+aerosol inden_123od_pyene air NZbutanone ug/m3 air+aerosol mercury air NZbutenal ug/m3 air+aerosol naphtalene air NZmethylpenzencarbaldehyde ug/m3 air+aerosol op_DDD air NZmethylpentane pptv air+aerosol op_DDE air NZmethylpeneral ug/m3 air+aerosol pp_DDT air NZpropenal ug/m3 air+aerosol per/tene air NZpropenal ug/m3 air+aerosol phenanthrene air NZbubr2one ug/m3 air+aerosol phenanthrene	ng/m3 ng/m3 pg/m3 ng/m3
air CFC_12 pptv air+aerosol fluorene air HCFC_123 pptv air+aerosol gamma_HCH air HCFC_123 pptv air+aerosol inden_123cd_pyrene air N2butanone ug/m3 air+aerosol nercury air N2butenal ug/m3 air+aerosol nercury air N2methylbenzencarbaldehyde ug/m3 air+aerosol op_DDO air N2methylpentane pptv air+aerosol op_DDE air N2methylpentane ug/m3 air+aerosol op_DDE air N2methylpentane ug/m3 air+aerosol op_DDT air N2methylpentane ug/m3 air+aerosol op_DDT air N2mothylpentane ug/m3 air+aerosol op_DDT air N2mothylpentane ug/m3 air+aerosol penylene air N2propenal ug/m3 air+aerosol phenanthrene air N2ptopenal ug/m3 air+aerosol phenanthrene air N2buten2one ug/m3 air+aerosol pp_DDD	ng/m3 pg/m3 ng/m3
air HCFC_123 pptv air+aerosol gamma_HCH air HCFC_22 pptv air+aerosol inden_123cd_pyrene air N2butanone ug/m3 air+aerosol mercury air N2butenal ug/m3 air+aerosol naphtalene air N2methyloenzencarbaldehyde ug/m3 air+aerosol op_DDD air N2methylpropenal ug/m3 air+aerosol op_DDT air N2xpopropanal ug/m3 air+aerosol perytene air N2propenal ug/m3 air+aerosol phenanthrene air N8buten2one ug/m3 air+aerosol pp_DDD	pg/m3 ng/m3
air HCFC_22 pptv air+aerosol inden_123od_pyrene air N2butanone ug/m3 air+aerosol mecury air N2butenal ug/m3 air+aerosol naphtalene air N2methylpentane ptv air+aerosol op_DDC air N2methylpentane ptv air+aerosol op_DDE air N2methylpentane ug/m3 air+aerosol op_DDT air N2mopropanal ug/m3 air+aerosol penytene air N2propenal ug/m3 air+aerosol phenanthrene air N5buten2one ug/m3 air+aerosol pp_DDD	ng/m3
air N2butenal ug/m3 air+aerosol naphtalene air N2methylbenzencarbaldehyde ug/m3 air+aerosol op_DDD air N2methylpentane ptv air+aerosol op_DDE air N2methylpenpanal ug/m3 air+aerosol op_DDT air N2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
air N2methylbenzencarbaldehyde ug/m3 air+aerosol op_DDD air N2methylpendane pptv air+aerosol op_DDE air N2methylpropenal ug/m3 air+aerosol op_DDT air N2oxopropanal ug/m3 air+aerosol penylene air N2propenal ug/m3 air+aerosol phenanthrene air N8buten2one ug/m3 air+aerosol pp_DDD	ng/m3
air N2methylpentane pptv air+aerosol op_DDE air N2methylpropenal ug/m3 air+aerosol op_DDT air N2oxopropanal ug/m3 air+aerosol perytene air N2propenal ug/m3 air+aerosol phenanthrene air N8buten2one ug/m3 air+aerosol pp_DDD	ng/m3
air N2methylpropenal ug/m3 air+aerosol op_DDT air N2oxopropanal ug/m3 air+aerosol perylene air N2propenal ug/m3 air+aerosol phenanthrene air NSbuten2one ug/m3 air+aerosol pp_DDD	pg/m3 pg/m3
air N2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	pg/m3
air N3buten2one ug/m3 air+aerosol pp_DDD	ng/m3
	ng/m3
Namemyripenzencamarinemyripen um/m3 i air+aerosol on DDF	pg/m3
aii Nametriyleentaen ugiin aii-raeroso pp_DDT	pg/m3 pg/m3
air Namenylpentane pptv air-aerosoi pp_UUI air Namethylbenzenarbaldehyde ug/m3 air-aerosoi pyrene	pg/m3 ng/m3
air NOx ug N/m3 air-aerosol retene	ng/m3
air NOy ug N/m3 air+aerosol sum_ammonia_and_ammonium	ug N/m3
air PAN ug N/m3 air+aerosol sum_nitric_acid_and_nitrate	ug N/m3
air acryloniyrile ug/m3 air+aerosol sum_sulph_diox_sulphate air ammonia ug N/m3 air+aerosol trans CD	ug S/m3
air ammonia ug N/m3 air⁴-aerosol trans_CD air benzene pptv air⁴-aerosol trans_NO	pg/m3 pg/m3
air benzenearbaldehyde ug/m3 precip HCB	ng/I
air butadiene pptv precip PCB_101	ng/I
air butanales ug/m3 precip PCB_118	ng/l
air butane pptv precip PCB_128	ng/l
air butenes pptv precip PCB_138 air carbondioxide ppmv precip PCB_149	ng/l ng/l
air carbonitoxice pptiv precip PCB_153	ng/l
air cyclohexane pptv precip PCB_177	ng/l
air dichloromethane ug/m3 precip PCB_18	ng/I
air dinitrogenoxide ppbv precip PCB_180	ng/l
air ethanal ug/m3 precip PCB_26	ng/l
air ethane pptv precip PCB_28 air ethanedial ug/m3 precip PCB_44	ng/l ng/l
air ethene pptv precip PCB_52	ng/l
air ethylbenzene pptv precip acidity	ue H/I
air ethyne pptv precip aldrin	ng/l
air halon_1211 pptv precip alpha_HCH	ng/l
air halon_1301 pptv precip aluminium air heptane pptv precip ammonium	ug/l mg N/l
air hexanal ug/m3 precip antinonium air hexanal ug/m3 precip antinonium	ng/l
air hexane pptv precip arsenic	ug/l
air isobutane pptv precip benz_a_anthracene	ng/I
air isoheptane pptv precip benzo_a_pyrene	ng/l
air isooctane pptv precip benzo_b_fluoranthene	ng/l
air isopentane pptv precip benzo_ghi_fluoranthene air isoprene pptv precip benzo_ghi_pervlene	ng/l
air isoprene pptv precip benzo_ghi_perylene air methanal ug/m3 precip benzo_k_fluoranthene	ng/l ng/l
air methane ppbv precip beta_HCH	ng/l
air methylchloroform pptv precip cadmium	ug/I
air mpxylene pptv precip calcium	mg/l
air neohexane pptv precip chloride air neopentane pptv precip chromium	mg/l ug/l
air neopentane pptv precip chromium air nitric_acid ug N/m3 precip chrysene	ug/I ng/I
air nitrogen_dioxide ug N/m3 precip cobalt	ug/l
air nitrogenmonoxide ug N/m3 precip conductivity	uS/cm
air octane pptv precip copper	ug/l
air oxylene pptv precip dibenzo_ah_anthracene air ozone ug/m3 precip dieldrin	ng/l ng/l
air ozone ugms precip dielorm air pentanal ug/m3 precip endrin	ng/l
air pentane pptv precip fluoranthene	ng/l
air pentenes pptv precip gamma_HCH	ng/l
air phenyletanone ug/m3 precip heptachlor	ng/l
air propanal ug/m3 precip inden_123cd_pyrene	ng/l
air propane pptv precip iron air propanone ug/m3 precip lead	ug/l ug/l
air propene ugilis precip read air propene pptv precip magnesium	mg/l
air styrene ug/m3 precip manganese	ug/l
air sulphur_dioxide ug S/m3 precip mercury	ng/l
air tetrachloroethylene ug/m3 precip nickel	ug/l
air toluene pptv precip nitrate air trichloroethylene ug/m3 precip op_DDD	mg N/I ng/I
air incinioreunyienie ugims precip op_DDE air+aerosol HCB pg/m3 precip op_DDE	ng/l
air+aerosol N1methylnaphtalene ng/m3 precip op_DDT	ng/l
air+aerosol N1methylphenanthrene ng/m3 precip pH	pH units
air+aerosol N2methylanthracene ng/m3 precip phenanthrene	ng/I
air+aerosol N2methylnaphtalene ng/m3 precip potassium	mg/l
air+aerosol N2methylphenanthrene ng/m3 precip pp_DDD air+aerosol PCB_101 pg/m3 precip pp_DDE	ng/l
air+aerosol PCB_101 pg/m3 precip pp_DDE air+aerosol PCB_105 pg/m3 precip pp_DDT	ng/l ng/l
air-taerosol POB_118 pg/m3 precip precipitation_amount	mm
air+aerosol PCB_138 pg/m3 precip precipitation_amount_off	mm
air+aerosol PCB_153 pg/m3 precip pyrene	ng/I
air+aerosol PCB_156 pg/m3 precip sodium	mg/l
air+aerosol PCB_180 pg/m3 precip sulphate_corrected	mg S/I
air+aerosol PCB_28 pg/m3 precip sulphate_total	mg S/I
	mg S/I ng/I ug/I
air+aerosol PCB_28 pg/m3 precip sulphate_total air+aerosol PCB_31 pg/m3 precip sum_PCB	ng/l

List of Instrument type code names, for line 32 of NASA/Ames files.

air_monitor air_sampler air_sa	Instrument Group	Instrument Type name Use in line 32 of metadata
air_monitor air_sampler air_sa	• •,	LHZ
air_monitor ir_abs air_monitor lidar air_monitor online_gc air_monitor uv_abs air_monitor uv_fluoresc air_sampler uv_fluoresc air_sampler abs_solution air_sampler ads_tube air_sampler alr_sampler air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler air_sampler impactor air_sampler air_sampler urganner air_sampler filter_abs_solution air_sampler bulk_sampler air_sampler tub_denuder precip_sampler incecore_sampler precip_sampler snowpack_sampler air_precip_sampler air_sampler snowpack_sampler air_precip_sampler air_sampler urganner air_sampler air_sampler urganner air_sampler air_sampler urganner air_sampler air_sampler urganner air_sampler air_sampl		011
air_monitor ir_abs air_monitor online_gc air_monitor teom air_monitor uv_abs air_monitor uv_fluoresc air_sampler ub_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler impactor air_sampler impactor air_sampler impactor air_sampler steel_canister air_sampler tub_denuder precip_sampler precip_sampler precip_sampler snowpack_sampler precip_sampler precip_sampler wet_only_sampler	_	
air_monitor air_monitor air_monitor air_monitor air_monitor air_monitor air_monitor air_sampler ann_denuder air_labs_solution air_sampler		
air_monitor teom air_monitor uv_abs air_monitor uv_fluoresc air_sampler uv_fluoresc air_sampler abs_solution air_sampler abs_tube air_sampler ads_tube air_sampler ann_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler impactor air_sampler impactor air_sampler air_sampler bub_denuder air_sampler tub_denuder precip_sampler precip_sampler incecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	_	_
air_monitor air_monitor air_monitor air_monitor air_sampler air_sa	_	
air_monitor air_monitor air_sampler ann_denuder filter_1pack filter_1pack filter_2pack filter_2pack filter_3pack air_sampler air_sampler bigh_vol_sampler air_sampler air_samp	_	
air_monitor air_sampler air_s		
air_sampler abs_solution air_sampler abs_tube air_sampler ads_tube air_sampler ann_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler impactor air_sampler impactor air_sampler steel_canister air_sampler tub_denuder precip_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	_	
air_sampler abs_solution air_sampler abs_tube air_sampler ads_tube air_sampler ann_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler impactor air_sampler impactor air_sampler passive_sampler air_sampler tub_denuder precip_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air_monitor	uv_fluoresc
air_sampler abs_tube air_sampler ads_tube air_sampler ann_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air_sampler	UK
air_sampler ads_tube air_sampler ann_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air_sampler	abs_solution
air_sampler ann_denuder air_sampler filter_1pack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air_sampler	abs_tube
air_sampler filter_lpack air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air_sampler	ads_tube
air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air sampler	ann denuder
air_sampler filter_2pack air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air sampler	filter 1pack
air_sampler filter_3pack air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air sampler	filter 2pack
air_sampler filter_abs_solution air_sampler high_vol_sampler air_sampler impactor air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	air sampler	
air_samplerhigh_vol_samplerair_samplerimpactorair_samplerpassive_samplerair_samplersteel_canisterair_samplertub_denuderprecip_samplerUKprecip_samplerbulk_samplerprecip_samplericecore_samplerprecip_samplersnowpack_samplerprecip_samplerwet_only_sampler		
air_sampler impactor air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler UK precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler		high vol sampler
air_sampler passive_sampler air_sampler steel_canister air_sampler tub_denuder precip_sampler UK precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler		
air_sampler steel_canister air_sampler tub_denuder precip_sampler UK precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler		•
air_sampler tub_denuder precip_sampler UK precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler		
precip_sampler UK precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler		_
precip_sampler bulk_sampler precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	precip sampler	
precip_sampler icecore_sampler precip_sampler snowpack_sampler precip_sampler wet_only_sampler	precip sampler	bulk sampler
precip_sampler snowpack_sampler precip_sampler wet_only_sampler		
precip_sampler wet_only_sampler		
	precip sampler	
piccip samplet biccib gauge	precip sampler	precip gauge

List of data flags used in the CAMP/HELCOM/AMAPEMEP data base

Flags are sorted according to severity. Flags above 250 indicate an exception that has invalidated or reduced the quality of the data element. These may be assigned at data source or by the data originator. Flags below 250 are assigned by NILU. They indicate that the element is valid, even if it may fail simple validation tests. The value may for example be extreme, but has been tested and found correct. Up to three flags can be assigned to each data element, coded into decimals, e.g. 0.678657568

The flag 100 is used to indicate that a value is valid even if an exception in the 999-250 range has also been flagged. In this case the 100 flag must appear before other flags. In all other cases, the most severe flag should appear first if more than one flag is needed.

Flag	Mnemonic	Description
Group	9: Missing flags	
999	MMU	Missing measurement, unspecified reason
990	MSN	Precipitation not measured due to snow-fall. Needed for
,,,	141514	historic data, should not be needed for new data
980	MZS	Missing due to calibration or zero/span check
Group	8: Flags for und	lefined data elements
899	UUS	Measurement undefined, unspecified reason
890	UNP	Concentration in precipitation undefined, no precipitation
Group	7: Flags used w	hen the value is unknown
799	MUE	Measurement missing (unspecified reason), data element
		contains estimated value
784	LPE	Low precipitation, concentration estimated
783	LPU	Low precipitation, concentration unknown
781	BDL	Value below detection limit, data element contains
		detection limit
780	BDE	Value below detection limit, data element contains
		estimated value. Also used for aggregates that is uncertain
		since many input elements were below the detection limit
771	ARL	Value above range, data element contains upper range limit
770	ARE	Value above range, data element contains estimated value
750	ALK	H+ not measured in alkaline sample
701	LAU	Less accurate than usual, unspecified reason. (Used only
		with old data, for new data see groups 6 and 5)
	6: Mechanical p	
699	LMU	Mechanical problem, unspecified reason
679	LUM	Unspecified meteorological condition
678	LHU	Hurricane
677	LAI	Icing or hoar frost in the intake
659	LSA	Unspecified sampling anomaly
658	LSV	Too small air volume
657	LPO	Precipitation collector overflow. Heavy rain shower (squall)
656	LWB	Wet-only collector failure, operated as bulk collector
655	LMI	Two samples mixed due to late servicing of sampler. Estimated value created by averaging
654	LLS	Sampling period longer than normal, observed values reported
653	LSH	Sampling period longer than normal, observed values reported
649	LTP	Temporary power fail has affected sampler operation
UTI	L/11	remporary power rain has affected sampler operation

Group	5: Chemical p	problem
599	LUC	Unspecified contamination or local influence
593	LNC	Industrial contamination
591	LAC	Agricultural contamination
578	LSS	Large sea salt contribution (ratio between marine and excess sulphate is
370	Loo	larger than 2.0)
568	LSC	Sand contamination
567	LIC	Insect contamination
566	LBC	Bird droppings
565	LPC	Pollen and/or leaf contamination
549	LCH	Impure chemicals
540	LSI	Spectral interference in laboratory analysis
532	LHB	Data less accurate than normal due to high field blank value
531	LLR	Low recovery, analysis inaccurate
521	LBA	Bactericide was added to sample for storage under warm climate
C	4 E .	
		inconsistent values
499	INU	Inconsistent with another unspecified measurement
478	IBA	Inconsistency discovered through ion balance calculations
477	ICO	Inconsistency between measured and estimated conductivity
460	ISC	Contamination suspected
459	EUE	Extreme value, unspecified error
458	EXH	Extremely high value, outside four times standard deviation
457	EXT	in a lognormal distribution
457	EXL	Extremely low value, outside four times standard deviation
156	IDO	in a lognormal distribution
456	IDO	Invalidated by data originator
Group	2: Exception t	lags assigned by the database co-ordinator (NILU)
299	CNU	Inconsistent with another unspecified measurement
278	CBA	Inconsistency discovered through ion balance calculations
277	CCO	Inconsistency between measured and estimated conductivity
260	CSC	Contamination suspected
259	CUE	Unspecified error expected
258	CXH	Extremely high value, outside four times standard deviation
		in a log-normal distribution
257	CXL	Extremely low value, outside four times standard deviation
		in a log-normal distribution
249	QDT	Apparent typing error corrected
211	QDI	Irregular data checked and accepted by database co-ordinator
210	QDE	Episode data checked and accepted by database co-ordinator
C	1	
-		flags for accepted, irregular data
147	QOD	Below theoretical detection limit or formal Q/A limit, but
100	005	a value has been measured and reported
120	QOR	Sample reanalysed with similar results
111	QOI	Irregular data checked and accepted by data originator
110	QOE	Episode data checked and accepted by data originator
100	QOU	Qualified by data originator

Example NASA/Ames file:

This is simply an example, constructed from the explanatory comments above. Most variables should be altered to suit the component, location, time period, etc. in question. The unchanging elements are lines 6, 17, 18, 20 and 36. Some others rarely change, e.g. line 1 and line 35. Others will vary and should certainly be checked carefully for each data submission, as should the data block itself, including start_time and end_time. Similar templates for different time resolutions etc. can be found on the CAMP2000A CD.

```
40 1001
Barrett Kevin
NO01L, NILU, Box 100, N-2027 Kjeller, Norway, Phone +47 63898000, Fax +47 63898050
Hjellbrekke Anne-Gunn
CAMP(insert) EMEP(insert)
1999 01 01 2000 04 01
Days from the file reference point (start_time)
1 1 1
999 9999 9 9 999
end time, Julian day counted from the file reference point
numflag, no unit, max 3 flags (of 3 digits each) coded into decimals
23
Data definition:
                    EBAS 1
Set type code:
                    ΤI
Regime:
                    IMG
Station code:
                    NO0001R
Platform code:
                    NO0001S
Startdate:
                    19990101
Timeref:
                    08 00
Revision date:
                    20000401
Component:
                    precipitation amount
Unit:
Matrix:
                    precip
Period code:
                    1 y
Resolution code:
                    1mo
Laboratory code:
                    NO01L
Instrument type:
                    bulk sampler
Instrument name:
                    BS14
Method ref:
                    NO01L_precip1a
Ext. lab. code:
                    NA
Ext. meth. ref:
                    NA
Add. qualifier:
                    1d
File name
                    TI.IMG.NO0001R.NO0001S.19960101.19970601.precipitation_amount.precip.1y.1mo
                    .NO01L.bulk sampler.BS14.NO01L precip1a.NA.NA.1d
File name ext:
                                 value
   start time
                  end time
                                               numflag
   0
                                 0
                  31
                                               0
                                 67
   31
                  59
                                               0
                  90
   59
                                 24
                                               0
   90
                  120
                                 47
                                               0
                                 39
   120
                  151
                                               0
   151
                  181
                                 9999.9
                                               0.999
                  212
                                 85
                                               0
   181
   212
                  243
                                 21
                                               0
    243
                  273
                                 14
                                               0
                                 9999.9
                  304
                                               0.678657568
   273
   304
                  334
                                 34
                                               0
   335
                  365
                                 21
                                               0
```

Appendix D

Data originators in each country

BELGIUM

Flemish Environmental Agency, Section Air Immissions, Kronenburgstraat 42, 2000 ANTWERP, Belgium

jasmine.dumollin@vmm.be

DENMARK

National Environmental Research Institute Frederiksborgvej 399

DK 4000, ROSKILDE, Denmark

kaare.kemp@dmu.dk

FRANCE

jean-yves.cabon@univ.brest.fr

GERMANY

Umweltbundesaft, Postbach 33 00 22. D-14191 BERLIN, Germany dagmar.kallweit@uba.de elke.bieber@uba.de

ICELAND

Vedurstofa Islands, Bustadavegi 9, 150 REYKJAVIK, Iceland johanna@vedur.is

IRELAND

Environmental Protection Agency, Pottery Road, DUN LAOGHAIRE,

Co. Dublin, Ireland

b.oleary@epa.ie c.odonnell@epa.ie

NETHERLANDS

RIVM, arien.stolk@rivm.nl

PO Box 1.

3720 BA BILTHOVEN, Netherlands

Norwegian Institute for Air Research, PB 100.

2027 KJELLER, Norway

knut.breivik@nilu.no torunn.berg@nilu.no

anne-gunn.hjellbrekke@nilu.no

PORTUGAL

Meteorological Institute, Rua C do Aeroporto de Lisboa,

1700 LISBON, Portugal

amelia.lopes@meteo.pt renato.carvalho@meteo.pt

SPAIN

pedro.de-pablo@sgca.mma.es javier.ruza-rguez@sgtcca.mma.es

SWEDEN

Swedish Environmental Reserach Institute

IVL, PB 47086,

S-402 58 GOTHENBURG, Sweden

karin.sjoberg@ivl.se karin.kindbom@ivl.se hakan.blomgren@ivl.se

UNITED KINGDOM

AEA Technology, Culham, ABINGDON, Oxfordshire, OX14 3TD keith.playford@aeat.co.uk

CAMP Database

Norwegian Institute for Air Research,

PB 100.

2027 KJELLER, Norway

kevin.barrett@nilu.no terje.krognes@nilu.no

anne-gunn.hjellbrekke@nilu.no

Appendix E

CAMP Data: Excel files on OSPAR website

Comprehensive Atmospheric Monitoring Programme Observations From Coastal Stations Report for 1999

ADDITIONAL NOTE ON Appendix E - CAMP Data, 1987 - 1999.

Norwegian Institute for Air Research NILU Report OR 2/2001, June 2001.

The present dataset for 1987-99 accompanies the 1999 data report. The report and accompanying dataset was presented to the OSPAR Working Group on Inputs to the Marine Environment (INPUT) at London, January 2001. All parties were asked for comments and updates to the dataset. The dataset presented here represents the result of this and earlier data validation rounds. This also represents the CAMP data as currently reported to the OSPAR database.

The data values recorded in the OSPAR database are here presented under headings of country, and thereafter individual station numbers. Data is supplied as Excel workbooks for each station for which data is held on the database. Each workbook contains a separate sheet for each dataset held on the database. These are arranged alphabetically. Separate datasets are held where measurement methods have changed at a station. These are listed sequentially, e.g. cadmium(1), cadmium(2) etc.

Stations are identified by code number. Lists of stations, their latitude and longtitude, height above sea level and distance from the coast are contained in the accompanying Excel table entitled 'station_list.xls'. Which stations have monitored which components at which time are described in three excel tables entitled 'nitrogen_component_list.xls', 'organics_component_list.xls', and metals_component_list.xls'. These are intended as a guide in locating particular compound data. It should be noted that currently all data from the German stations DE0001 Westerland and DE0041 Westerland Tinnum are listed as DE0001.

Not all of the historical data listed in the early CAMP Data Reports is held on the database. For such data much accompanying metadata concerning methods, etc may be missing. Often precise dates are missing. For completeness the historical data reports are included as released earlier by OSPAR. The reader should refer to these if interested in earlier time periods.

Data originators in each country are encouraged to review both the Excel datasheets, and the historical data reports and report any additional information to NILU. Particularly, data originators are requested to provide or update methods information, instrument information, and laboratory information. Updates should be reported by email to:

<u>anne-gunn.hjellbrekke@nilu.no</u> or kevin.barrett@nilu.no

NILU, June 22, 2001. Kevin Barrett and Rita Larsen Metals component list - air

	compone 	87	89			92	93	94	95	96	97	98	99
Aluminium	IS0091R	٠.			•	<u> </u>					<u> </u>		
Arsenic	DE0001R												х
	DK0008R												x
	DK0031R					х	х		x	х	х	x	x
	GB0013R					^	^		X	x	^	^	_
	GB0013R						x	x	X	x	x	x	х
	GB0090R					x	x	x	X	x	x	X	x
	GB0090R GB0091R					x	x	x	X	x	x	x	x
	GB0091R GB0092R					^	x	x	X	^	^	^	^
	IS0091R						^	^	^	х	x		х
	NL0009R									X	X	x	X
	NO0042G									^	^	^	
													X
Cadmium	NO0099R				Х	X	X	Х	X	X	X		X
Caumum	BE0002R									X			
	BE0004R										X	X	
	DE0001R									X	Х	X	Х
	DK0008R												Х
	DK0031R									X	X	X	Х
	GB0013R								X	Х			
	GB0014R						X	Х	X	Х	X	X	Х
	GB0090R		X	X	X	X	X	X	X	X	X	X	X
	GB0091R		X	X	X	X	X	Х	X	X	X	X	Х
	GB0092R						X	X	X				
	GB0093R		X	X	X	X							
	IS0091R								X	Х	X		Х
	NL0009R									X	X	X	X
	NO0042G												Х
	NO0099R				X	X	X	Х	X	X	X		X
Chromium	BE0090R			X									
	DK0008R												х
	DK0031R			X	X	X	X	X		X	X	X	X
	GB0013R								X	X			
	GB0014R						Х	х	X	Х	Х	X	х
	GB0090R		X	X	Х	х	Х	х	X	Х	Х	X	х
	GB0091R		X	X	х	х	х	х	X	х	х	X	х
	GB0092R						Х	х	X				
	GB0093R		X	X	Х	х							
	IS0091R								х	х	х		х
	NO0042G												х
	NO0099R				х	х	х	х	x	х	х		х
Cobalt	NO0099R												X
Copper	BE0002R									х			
	BE0004R										х	x	
	BE0090R			X	х						*		
	DE0001R									х	x	x	х
	DK0008R										_		X
													^
	DK0031R			х	х	х	х	х	Х	Х	х	Х	х

Metals component list - air

motaro (87	88	89			92	93	94	95	96	97	98	99
	GB0014R	01	00	09	90	91	92							
								X	X	X	X	X	X	X
	GB0090R			X	X	X	X	X	X	X	X	X	X	X
	GB0091R			X	X	Х	X	X	X	X	X	Х	X	X
	GB0092R							X	X	X				
	GB0093R			X	X	X	X							
	IS0091R									X	X	Х		X
	NO0042G													X
	NO0099R					Х	X	X	X	X	X	Х		X
Iron	DK0008R													X
	DK0031R													X
	IS0091R													X
Lead	BE0002R								X		Х			
	BE0004R											Х	X	
	BE0090R				X	X		X						
	DE0001R										X	х	X	X
	DK0008R													X
	DK0031R				X	X	X	X		x	X	х	x	X
	GB0013R									X	X			
	GB0014R							X	X	X	X	X	X	X
	GB0090R			X	X	X	X	X	X	X	X	X	X	X
	GB0091R			X	X	Х	Х	Х	X	X	Х	х	X	Х
	GB0092R							Х	X	X				
	GB0093R			X	X	Х	х							
	IS0091R						Х			X	Х	х		Х
	NL0009R										х	х	х	х
	NO0042G													х
	NO0099R					х	х	х	х	х	х	х		х
Manganese	IS0091R													х
_	NO0042G													х
Mercury	IS0091R													х
Nickel	BE0002R										х			
	BE0004R											х	x	
	BE0090R				x	х								
	DE0001R				-	-					х	х	x	x
	DK0008R										<u> </u>			X
	DK0000R					x	х	х	x	Х	х	х	x	x
	GB0013R					^	^	^	_	x	X	^	^	
	GB0013R GB0014R							х	x	^ Х	X	x	x	х
	GB0014R GB0090R			v	v	v	x	X		X	X	x	X	
	GB0090R GB0091R			X	X	X			X					X
				X	X	Х	X	X	X	X	Х	Х	X	X
	GB0092R			_	V			X	X	X				
	GB0093R			X	X	Х					_			H
	IS0091R					_	_	_		X	X	Х	_	X
	NO0042G													X
Vancelium	NO0099R					X	X	X	X	X	X	X		X
Vanadium	IS0091R													X
	NO0042G													X
	NO0099R													X

Metals component list - air

		87	88	89	90	91	92	93	94	95	96	97	98	99
Zinc	BE0002R										X			
	BE0004R											X	X	X
	BE0090R				X	X								X
	DK0008R													
	DK0031R				X	X	X	X	X	X	X	X	X	X
	GB0013R									X	X			
	GB0014R							X	X	X	X	X	X	X
	GB0090R			X	X	X	X	X	X	X	X	X	X	X
	GB0091R			X	X	X	X	X	X	X	X	X	X	X
	GB0092R							X	X	X				
	GB0093R			X	X	X	X							
	IS0091R									X	X	X		X
	NL0009R										X	X	X	X
	NO0042G													X
	NO0099R	, in the second				X	X	X	X	X	X	X	X	

	ponent list - p	87	88	89	90			93	94	95	96	97	98	9
Nitrate	BE0003R	Х		х	Х	х	Х	Х	Х	Х	х	Х	Х	Х
	DK0008R							х	х	Х		х	Х	х
	DK0031R					Х	Х			Х	х			
	FR0090R							Х	Х	Х				х
	DE0001R										Х	Х	Х	Х
	ES0005R						Х	Х	Х	Х	Х	Х	Х	Ī
	GB0006R			Х	Х	Х	Х	Х						
	GB0014R			X	X	Х	X	X	X	X	X	X	X	
	GB0016R			X	X	Х	X	X	X	X				
	IE0002R						X	X	X	X	X	X	X	Х
	IS0002R							X	X	X	X			Х
	IS0090R								X	X	X			Х
	NL0009R										X	X	X	X
	NL0091R										X	X	X	X
	NO0001R	X		X										
	NO0039R	X		X	X	X	X	X	X	X	X	X		
	NO0057R							X	X	X	X	X)
	NO0099R				X	X	X	X	X	X	X	X	X)
	PT0003R							X	X	X				X
	PT0004R							X	X	X)
	PT0010R									X				>
	SE0002R)
	SE0098R									X			L	2
mmonium	BE0003R	X		Х	X	Х	Х	X	Х	X	X	Х	Х	X
	DK0008R													
	DK0031R				Х	Х	Х	X	X	X				L
	FR0090R							X	X	X				X
	DE0001R										X	Х	Х	X
	ES0005R						Х	X	Х	X	X	Х	Х	
	GB0006R			Х	X	Х	Х	X						
	GB0014R			Х	X	Х	Х	X	Х	X	X	Х	Х	
	GB0016R			Х	Х	Х	Х	X	X	X				L
	IE0002R						X	X	Х	X	X	X	Х	X
	IS0002R)
	IS0090R													X
	NL0009R										X	Х	Х	X
	NL0091R										X	Х	Х	X
	NO0001R			X										L
	NO0039R	X		X	X	Х	Х	X	X	X	X	Х		
	NO0057R							X	X	X	Х	X		X
	NO0099R				Х	Х	Х	X	X	X	X	X	X	X
	PT0003R							X	X	X				X
	PT0004R							X	X	X				Х
	PT0010R									X				Х
	SE0002R													Х
	SE0098R									X				X

Organics component list - air

Organics	оотпре													
		87	88	89	90	91	92	93	94	95	96	97	98	99
alpha-HCH	IS0091R									Х				X
	NO0099R					X	X	X	х	х	X	х	X	
beta-HCH	IS0091R													X
cis-CD	IS0091R													X
Dieldrin	IS0091R													X
gamma-HCH	IS0091R									X				X
	NO0099R					X	X	X	X	X	X	X	X	
нсв	IS0091R									X				X
	NO0099R					X					X		X	
o,p'-DDT	IS0091R													X
p,'p-DDD	IS0091R													X
p,p'-DDE	IS0091R													X
p,p'-DDT	IS0091R													X
PCB-101	IS0091R													X
PCB-105	IS0091R													X
PCB-118	IS0091R													X
PCB-138	IS0091R													X
PCB-153	IS0091R													Х
PCB-156	IS0091R													X
PCB-180	IS0091R													X
PCB-28	IS0091R													X
PCB-31	IS0091R													Х
PCB-52	IS0091R													X
trans-CD	IS0091R													X

Norwegian Institute for Air Research (NILU) P.O. Box 100, N-2027 Kjeller, Norway

REPORT SERIES	REPORT NO. OR 2/2001	ISBN 82-425-123	6-1
SCIENTIFIC REPORT		ISSN 0807-7207	
DATE	SIGN.	NO. OF PAGES	PRICE NOK 120
TITLE		PROJECT LEAD	•
Observations from Coastal Station	s in 1999		Barrett
		NILU PROJECT	NO.
		O-9°	7146
AUTHOR(S)		CLASSIFICATIO)N *
Kevin Barrett			
		CONTRACT REI	ā.
REPORT PREPARED FOR OSPAR Commission Bonn Agreement New Court 48 Carey Street London WC2A 2JQ UNITED KINGDOM			
Atlantic by the CAMP programm	ions made at monitoring stations in 1999 ie. The monitoring programme and stationed by actual observed values listed in the A	ns are described and	ea and North East I annual observed
NORWEGIAN TITLE			
KEYWORDS			
Marine	Atmospheric	Depo	sition
ABSTRACT (in Norwegian)			

Classification

BRestricted distribution

Classified (not to be distributed)

For further information about the work and publications of the OSPAR Commission, or additional copies of this report, please contact:

Pour tout renseignement sur les activités et les publications de la Commission OSPAR, ou pour tout exemplaire supplémentaire de ce rapport veuillez contacter :

The Executive Secretary OSPAR Commission New Court 48 Carey Street London WC2A 2JQ United Kingdom

Tel: 00 44 (0) 20 7430 5200 Fax: 00 44 (0) 20 7430 5225 E-mail: secretariat@ospar.org Website: http://www.ospar.org

Price: Free when downloaded from the OSPAR website

£8.00 including postage & packing for hard copy orders

Prix: gratuit lorsque le rapport est téléchargé du site web d'OSPAR

£8.00 franco de port pour les commandes de copie papier

ISBN 0 946956 62 6