Addendum to the OSPAR Background Document Concerning Techniques for the Management of Produced Water from Offshore Installations (Publication number 162/2002)

OSPAR Commission 2006 Addendum to the OSPAR Background Document Concerning Techniques for the Management of Produced Water from Offshore Installations

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the "OSPAR Convention") was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain.

La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l'Irlande, l'Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d'Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l'Espagne.

© OSPAR Commission, 2006. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated.

© Commission OSPAR, 2006. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l'Editeur, sous réserve que l'origine de l'extrait soit clairement mentionnée.

ISBN 1-905859-33-3 ISBN 978-1-905859-33-7 Publication number 295/2006 Addendum to the OSPAR Background Document Concerning Techniques for the Management of Produced Water from Offshore Installations

Addendum to the OSPAR Background Document Concerning Techniques for the Management of Produced Water from Offshore Installations (Publication number 162/2002)

This document contains 5 additional fact sheets as finalised in accordance with the agreement at the 2005 meeting of the OSPAR Offshore Industry Committee (OIC 2005 Summary Record OIC 05/15/1).

Table B - 10: I	Table B - 10: In Vessel Coalescence Technology for Improved Performance of Deoiling						
Hydrocyclone	2S						
Principle	Cartridge assembly containing specialised coalescence media installed into either the inlet chamber of the Deoiling Hydrocyclone vessel or into a vessel located upstream of the PWT system. The inlet chamber of a conventional Deoiling Hydrocyclone can have a residence time of up to 20 seconds. This residence time is used constructively to achieve partial droplet coalescence while maintaining a high insensitivity to solids blocking. This is achieved by optimising a number of the technology design parameters including media material selection, media density, media surface treatment, flow regime and mechanical orientation. The resulting enhanced coalescence activity can boost the performance of the downstream deoiling hydrocyclones and reduce the oil in water concentration in the discharge stream by up to 80%.						
	 Installing this technology in the inlet chamber of a deoiling hydrocyclone vessel has many benefits: it allows flow velocities to be low (crucial for good coalescence) technology can be retrofitted without the requirement of any modification to plant or hot work Low risk and very cost effective to install (installation possible within one shift) 						
Process diagram	Oily water inle	Clean water outlet					
Basic elements	Cartridge housing typically constructed from 316L or Duplex Stainless Steel, containing support plates fitted with the optimised media material which is surface treated to optimise performance for specific applications.						
Suitable for the removal of:	Hydrocarbons Dispersed oil Dissolved oil (partially)	Other contaminants (specify)See table at the bottom of the next page					
	Remarks:						

Technical details	Per Unit	Minimum Maximum				
	Treatment capacity (m3 produced water per hour)	Units can be designed for any capacity. Typical capacities are 5 to 5,000 m3/h				
	Gross Package volume (LxWxH)	As the unit normally fits inside an existing vessel, there is no additional space required.				
	Operating weight	Weight typically ranges from 10 to 300 kg, depending on the size of unit				
	CAPEX (€)	CAPEX typically ranges from \pounds 5,000 to \pounds 100,000 depending on the capacity				
	OPEX (€/year)	OPEX is normally nil				
	Cost per m3 produced water(€/m3)	Based on 4 years continuous operation, $\leq \varepsilon 0.01/m3$				
Critical operational parameters	Temperature, droplet size, water density, viscosity, wax content, solids content and type.					
Operational reliability, incl. information on downtime	On the basis that the unit is operated and maintained fully in accordance with the O & M Manual, the operational reliability has been found to be very high. Only minimal downtime is required to remove the cartridge from the Hydrocyclone vessel for cleaning, unless media is to be replaced.					
	Remarks:					
Cross media	Air	Not applicable				
enects	Energy	No energy input required				
	Added chemicals	The technology is structurally insensitive to typical oilfield chemicals e.g. corrosion inhibitor, scale inhibitor, demulsifier although its performance improvement potential can be influenced by excessive addition of some corrosion and scale inhibitors since these chemicals can have a dramatic impact on the water chemistry (particularly interfacial tension).				
	Waste	The technology does not generate any specific waste				

Other impacts	Health and safety	None – Passive, no	moving parts		
	Maintenance interval & availability (% per year)	It is recommended that the internals are inspected on an annual basis.			
		Availability > 99.8	%		
Practical	General		Onshore / Offshore		
experience					
State of development	 Implemented offshore, commercial technology Used onshore Offshore field trials 		Practical applicability: The technology is a highly practical technology, suitable both for new facilities and for retrofits		
			Driving force for implementation (e.g. legislation, increased yield, improvement product quality): OSPAR Legislation Improved Hydrocyclone Performance Operator stretch targets		
			Example plants: Britannia, Bruce, Nelson, Draugen, Heidrun, Balmoral		
Literature source	"Choosing Produced Water Treatment Technologies Based on Environmental Impact Reduction", SPE Paper 74002. "Performance Enhanced Hydrocyclone Systems : Development & Field Experience", 7 th IBC				
	Production Separation Systems, Oslo, 23 rd – 25 rd May 2000. "A Novel Pre-Coalescence Technology to Improve Deoiling Hydrocyclone Efficiency" 3 rd IBC Water Management Offshore, Stavanger, 20 th May 1999.				

	Suital	ble for	Removal	Efficiency %)	Reference to source documentation
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					Field test reports.
- Dispersed oil	\checkmark	\checkmark	Up to 99%	Up to 99%	Commissioning reports.
- Dissolved oil	\checkmark	\checkmark	> 50%	> 50%	"Choosing Produced Water Treatment Technologies Based on Environmental Impact Reduction", SPE Paper 74002.
					"Performance Enhanced Hydrocyclone Systems : Development & Field Experience", 7 th IBC Production Separation Systems, Oslo, 23 rd – 25 th May 2000.
					" A Novel Pre-Coalescence Technology to Improve Deoiling Hydrocyclone Efficiency", 3 rd IBC Water Management Offshore, Stavanger, 20 th May 1999.
Specific oil components:					Whilst the technology is
 BTEX NPD PAH's 16 EPA Others (indicate) 	√ Unknown √	√ Unknown √	> 50% Unknown > 50%	> 50% Unknown > 50%	primarily designed to remove free oil droplets, reports (eg SPE paper 74002) show that BTEX's and PAH's often partition to a significant proportion into free oil droplets. Therefore, the technology can reduce the total discharges of BTEX's and PAH's. The actual efficiency will depend on the chemistry of the application, which will vary widely from platform to platform. No work has been done on the
					effectiveness of the technology on NPD's.
Heavy metals	*	*	*	*	* Heavy metals will only be removed if they partition into the free oil phase.
Offshore chemicals					* The technology is not affected
- methanol	*	*	*	*	by these oilfield chemicals. The
- glycol	*	*	*	*	chemicals depends on the extent
- corrosion inhibitors	*	*	*	*	to which they partition into the
- biocides	*	*	*	*	on phase.
- scale inhibitors	*	*	*	*	
- surfactants	*	*	*	*	
- others (indicate)	*	*	*	*	

Technical details	Per Unit	Minimum	Maximum			
	Treatment capacity (m3 produced water per hour) Gross Package volume (LxWxH) Operating weight CAPEX (€) OPEX (€year) Cost per m3 produced water(€m3)	No minimum, nominally 2M ³ /hour 2 x 1.5 x 2 3000 Kg 400,000 40,000 25 (in first year – 2.28 thereafter)	No Maximum – Built up in units of 70 – 350M ³ /hour 3.5 x 1.5 x 2 5000 Kg 750,000 75,000 0.27 (in first year – 0.024/year thereafter))			
Critical operational parameters	Requires dry air, cooling water that i	s chloride free, and electrical pow	er			
Operational reliability, incl. information on downtime	There should be little or no downtime system fails, water will still flow thro	e as there is little in the way of mo ough it.	oving parts in the kit. If the			
	Remarks:					
Cross media	Air					
enects	Energy	Requires 23 kW for 66 m ³ /h unit				
	Added chemicals	None				
	Waste	None				

Other impacts	Health and safety	Ozone is toxic and	operators must not be exposed to this gas	
	Maintenance interval & availability (% per year)	Maintenance interval: Estimated at between 1-6 months Availability: 95%+		
Practical experience	General		Onshore / Offshore	
State of development	☐ Implemented offshore ☐ Used onshore ✓ Offshore field trials		Practical applicability:	
			Driving force for implementation (e.g. legislation, increased yield, improvement product quality):	
			Example plants:	
Literature source	"A Practical Method for the Reduction Advanced Oxidation Process", Sned	on of Hydrocarbon (don et al, GPA, Berg	Concentration in Produced Water using an gen, 13 th May 2002.	

	Suitable for		Removal Efficiency		Reference to source
				cal %)	documentation
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil	\checkmark	\checkmark	50	75	
- Dissolved oil	\checkmark	\checkmark	50	75	
Specific oil components:					
- BTEX	\checkmark	\checkmark	50	75	
- NPD	\checkmark	\checkmark	50	75	
- PAH's 16 EPA	\checkmark	\checkmark	50	75	
- Others (indicate)	\checkmark	\checkmark	[□]	[75]	
Heavy metals					
Offshore chemicals					
- methanol	\checkmark	\checkmark	50	75	
- glycol	\checkmark	\checkmark	50	75	
- corrosion inhibitors	\checkmark	\checkmark	50	75	
- biocides	\checkmark	\checkmark	50	75	
- scale inhibitors	\checkmark	\checkmark	50	75	
- surfactants	\checkmark	\checkmark	50	75	
- others (indicate)	~	~	50	75	

	From wells						
	Comparisons of the CFU vs. tr	aditional produce	d water ti	rains.			
	Comparable information	Relativ	e compari	ison of the CFU app	blied offshore		
	Capacity basis Bpd m ³ /h Wet weight (metric tons) Footprint (m ²) Performance OiW (mg/l) Sensitivity to upstream - oil slugging - flow variation - solids - gas - movement (FPSO) Minimum inlet pressure required (barg) Performance on high pressure CAPEX	81,00 54(45 30 <40 Hig Hig Hig Sensitive Lov 5 Goo Hig	00) h h (<5%) v d	81,000 540 8 6 <30 Less sensit Low Not sensit Low 0.7 No negative Low	10 81,000 540 16 12 <10 tive Low Low Low tive Not sensitive Low 1.5 e effect, but only tested to 30 bars Medium X		
	OPEX	Hig	h	Low	Low		
Basic elements	Source: Vik and Engebretsen, 20	JUD striftuggal formation (C. 4	۲ av-1.	and applace: C			
Suitable for the removal of:	Hydrocarbons Dispersed oil droplets down to	3 μm droplet size	(cyclone)	✓ Other contamin PAH, BTEX, pheno chemicals	ants (specify) bls (C5+), Oil soluble		
Technical details	Treatment capacity $(m^3/h)^{1}$		Miı	nimum 3 m ³ /h	Maximum 2200 m ³ /h		

	Gross Package volume (LxWxH)		3.5 x 2.5 x 3.5 m ²		
	Operating weight		Dry weight $6.5/11 \text{ tons}^{2}$		
	CAPEX (€)		NOK 7 million (€900.000) (Duplex steel) ³⁾		
	OPEX (€year)		Minimal: no maintenance, no energy required		
	Remarks:				
	1. Capacity mentioned is related to pro-	ojects installe	ed or under installation.		
	2. Figures on weight and footprint is b	ased on CFU	J standard equipment 2xCFU220 (540 m ³ /h).		
	3. CAPEX & OPEX is related to same	e standard eq	uipment		
Critical operational parameters	Oil droplet size, surfactants stabilising backflowed to the produced water syst	small oil dro tem, oil coate	oplets, gas in water, some well and operational chemicals ed solids		
Operational reliability, incl. information on	100% reliable, no downtime, no maint small bore openings. Large operationa scaling.	enance on th l window (de	e technology equipment, no operators, no rotating parts or own to 20% of design flow). Not vulnerable for solids or		
downtime	<i>Remarks:</i> Regarded as proven technologiand others.	ogy by Norsl	k Hydro, Statoil, ConocoPhillips, Shell, ChevronTexaco		
Cross media	Air	No impact on air. Gas is returned to the oil system.			
circus	Energy	Low or no a bar	v or no additional energy needed. The pressure drop is down to 0.5		
	Added chemicals	If needed in	a general process (flocculant)		
	Waste	No waste ge	waste generation. Oil and gas are normally returned to oil system		
Other impacts	Health and safety	No negative special prec	o negative effects. If high benzene concentrations in produced water, ecial precautions needed during water sampling		
	Maintenance interval & availability (% per year)	Limited m accumulate periods.	Limited maintenance required for the CFU since solids are not accumulated in the system. Maintenance during normal shutdown periods.		
Practical	General		Onshore / Offshore		
experience					
State of development	 ✓ Implemented offshore (15) ✓ Offshore field trials (37) 	Practical ap Offshore / (The Compa Norwegian further deve	plicability: Dnshore let Flotation Unit (CFU) was first installed offshore on the Continental Shelf (NCS) in 2001, and has since then been eloped, tested and installed on several installations.		
	Driving force for implementation (e.g.	legislation,	increased capacity, improved water quality):		
	Legislation and economic drivers caus	ed by increa	sed water cut		

Literature source	Descousse, A., Mönig, K. and Voldum, K. (2004): Comparison of new and traditional produced water treatment technologies for their potential to remove dissolved aromatic components, 2nd Produced Water Workshop 21-22 April 2004, NEL East Kilbride, Glasgow
	Dolonen, O.S. (2004): Operational experiences at Snorre/Vigdis. Produced Water – Zero Discharge. Myth or Reality? Tekna 15-16 January 2004, Stavanger, Norway
	Hammerstad, T. and Rinde, S. (2004): New purification technology lowers discharges on Troll. Hydro, 5.07.2004. Presentation on OTC, Houston. <u>Http://www.hydro.com/cgi-bin/</u>
	Jahnsen, L. (2004): Epcon CFUs- a produced water treatment technology improving environment and efficiency of oil production, International Seminar on Oilfield Water Management, Rio, Brasil August $16^{th} - 18^{th}4$
	Jahnsen, L. (2005): Epcon CFU Technology: The alternative to traditional produced water treatment systems. Russian Arctic Offshore and CIS Continental Shelf, September 13-15, 2005, St.Petersburg, Russia
	Jahnsen, L. (2005): Epcon CFU Technology – A produced water treatment technology improving the environment and the efficiency of oil production, Iran Oil & Gas Show, April 14 th 2005
	Jahnsen, L. and Vik, E.A. (2003): Field Trials with Epcon Technology for Produced Water Treatment, Produced Water Workshop 26 th -27 th March 2003, NEL East Kilbride Glasgow
	Pollestad, A. (2005): The Troll Oil Case – Practical Approach Towards Zero Discharge. Tekna Produced Water Conference 18-19 January 2005, Tekna
	Vik, E. A. (2005): Environmental Risk Based Wastewater Treatment in the E&P Industry. Editorial Input to Business Briefing: Exploration & Production: The Oil & Gas Review
	Vik, E.A. and Bruås, L. (2005): Results of the Epcon CFU Zero Discharge Tests. Case studies 2001-2005. Aquateam Report no. 04-025. Version 2.
	Vik, E.A. and Engebretsen, S. (2005a): Documentation of Performance of the Epcon CFU Process. Case Studies Year 2001-2005. Aquateam Report No. 05-039
	Vik, E.A. and Dinning, A.J. (2005): Upscaling the Epcon CFU Technology. Comparison of test and full scale performance data from 2000-2005. Aquateam Report No. 05-057.
	Vik, E.A. and Engebretsen, S. (2005): Technology Assessment of Epcon CFU. Aquateam Report No.05-052.
	Vik, E.A., Folkvang, J., Jahnsen, L. and Oseroed, S.E. (2002): Improved Offshore Produced Water Treatment and Increased Techniocal Flexibility using the Epcon Compact Flotation Unit. Discussion of Case Studies from Norsk Hydro Brage and Troll C Platforms, 13 th International Oil Field Chemistry Symposium, Norwegian Society of Charted Engineers

	Suitab	Suitable for		Efficiency	Reference to source documentation
			(%)		
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					Applications have so far focussed on oil installations
- Dispersed oil	\checkmark		80-95		Removal efficiency depends on starting
- Dissolved oil			Low		point (Vik and Engebretsen, 2005 a)
Specific oil components:					
- BTEX	~		40-80		Vik and Bruås (2005). BTEX removal is dependent on the gas
- NPD	\checkmark		45-60		rate used (stripping effect) and the cleanliness of the gas with respect to
- PAH's 16 EPA	\checkmark		60-85		BTEX. Removal efficiency of other
- Naphthalenes	✓		40-60		level in the water
- C6-C9 phenols	~		40-60		
Heavy metals					Not measured
Offshore chemicals					
- methanol					Not measured, but expected to have same removal efficiency for removing
- glycol					oil soluble chemicals as for removing dispersed oil, but reduced efficiency for
- corrosion					removing water soluble chemicals.
inhibitors					solubility.
- biocides					
- scale inhibitors					
- surfactants					
- others (indicate)					

Table C - 16: Cond	ensate induced extraction						
Principle	Condesate induced extraction is ba condensate (NGL) from a suction ser mixed with the produced water stream The condensate acts as a solvent, i.e.	sed on extract rubber in the pr m, by means of e. extracts the	tion of hydrocarbo roduction stream. C f a special designed watersoluble arom	ons from produced water, using condensate (NGL) is injected and injection & mixing system. atic components from the water			
	droplets that are efficiently separated from the produced water by the downstream separation unit (i.e. hydrocyclone, compact flotation unit or similar).						
	The condensate requirement for a given removal efficiency is proportional to feed Oil-in-Water concentration into the condensate induced extraction process.						
Process diagram							
Basic elements	Condensate, injection & mixing syste	em			1		
Suitable for the removal of:	Hydrocarbons √ Dispersed oil √ Dissolved oil		Other contamin Production chemi Log (octanol/wate See table at the b	nants (specify) cals with er partition) greater than 2.0. bottom of the next page C	To Gas ompressors		
	Remarks:		1.01.1	High Pressure			
Technical details	For dissolved oil: the technique is sur Per Unit (typical)*	itable for the re Mi	emoval of dissolved	aromatic hydrocarbons. Separator Maximum			
	Treatment capacity (m3 produced water per hour)		10	500			
	Gross Package volume, LxWxH, m Operating weight, tons CAPEX (€) OPEX (€/year)	3 x 0,5					
	Cost per m3 produced water(€/m3)						
Critical operational parameters	Produced water pressure must be sufficiently high to keep the condensate in the liquid phase during the separation process. If the operating pressure does not match the phase properties of the condensate, boosting of the produced water or condensate processing might be required. This can be done without compromising the extraction process efficiency.						
Operational reliability, incl. information on downtime	The condensate induced extraction properties of the specifications and with a reasonable statement of the specification of the specific	rocess is highly sparing philoso	y reliable, presumed ophy.	d operating within the design	Hydrocy		
	<i>Remarks:</i> Costs for retrofit implementation of depending on field specific condition	of the condens as and the targe	ate induced extra t removal efficience	ction process are case specific, y.			

Cross media	Air				
cifects	Energy	Energy for pumping (and potentially condensate processing)			
	Added chemicals	none			
	Waste	none			

Other impacts	Health and safety	Reclassification of the produced water system to a hydrocarbon containing system.		
	Maintenance interval & availability (% per year)			
Practical	General		Onshore / Offshore	
State of development	 ✓ Implemented offshore ✓ Used onshore ✓ Offshore field trials ✓ Testing 		On and Offshore Practical applicability: This can be done without compromising the extraction process efficiency. Driving force for implementation (e.g. legislation, increased yield, improvement product quality): Legislation and economic drivers caused by increased water cut	
			Example plants: Successful testing at: Statfjord B and C Ekofisk 2/4J Snorre A Aasgard A Troll C Full-scale implementation at: Statfjord A, 2000 m3/h Statfjord B, 3000 m3/h Statfjord C, 4300 m3/h Snorre A, 1000 m3/h Ekofisk 2/4J&M, 2000 m3/h	
Literature source				

	Suital	Suitable for		Efficiency	Reference to source
			(%)		documentation
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil	\checkmark	\checkmark	95	95	
- Dissolved oil	\checkmark	\checkmark	95	95	
Specific oil components:					
- BTEX			90 (*)	80 (*)	
- NPD			90	90	
- PAH's 16 EPA			95	95	
- Others (indicate)					
Heavy metals					
Offshore chemicals					
- methanol					
- glycol					
- corrosion inhibitors	\checkmark	\checkmark	40 (**)	40 (**)	
- biocides					
- scale inhibitors					
- surfactants					
- others (indicate)			80 (***)	80 (***)	

Removal efficiency is referenced to a standard hydrocyclone discharge of 20 ppm. (*) Removal efficiency depending on BTEX content of condensate. (**) Specific class of corrosion inhibitors. (***) Log (octanol/water partition) greater than 2.0.

Table C - 17: Tail s	haped pre-coalescer					
Principle	In a tail shaped pre-coalescer, fluid enters the coalescer housing via an axial inlet nozzle, and then is forced to flow along the housing in the same longitudinal direction as the fibrous coalescer bundle. As fluid travels along the oleophilic fibres, small oil droplets are retained on the surface of the fibres. The droplets coalesce with other droplets on the fibre surface, and therefore grow as they migrate along bundle towards the outlet. Fluid drag increases as the droplet diameter grows, and eventually larger droplets are released at the end of the bundle. It is important to note that there is no phase separation in the coalescer. All the inlet fluid leaves through a common outlet, but the outlet mean droplet size is considerably enhanced, leading to easy gravity separation downstream. The coalescing action occurs within two seconds in the bundle, making a very compact device. The combination of flow along the fibres, rather than across as conventional coalescers, and relatively high fluid velocities, mean that solids are generally passed straight through the coalescer, and the product is therefore much less sensitive to fouling than conventional coalescing media.					
Process diagram	\bigcirc					
	п		Sec.			
			1000			
				1100		
				e latit		
	FIGURE 2		T = 2t	and the second second		
Basic elements						
Suitable for the	Hydrocarbons		Other contaminants (specify)			
removal of:	✓ Dispersed oil					
	✓ Dissolved oil		See table at the bottom of the next page			
	<i>Remarks:</i> The technology itself, does downstream equipment (such as hydr to separate. Hence the name pre-coa been shown in practice that both disp phenols) oil removal can be enhanced	The technology itself, does not actually remove oil but improves the performance of m equipment (such as hydrocyclones) by coalescing the oil droplets and making them easier . Hence the name pre-coalescer. Use of the technology upstream of hydrocyclones has n in practice that both dispersed and dissolved (naphthalenes, 2-4 ring PAH and C6-C9 il removal can be enhanced.				
Technical details	Per Unit	Mi	nimum	Maximum		
	Treatment capacity (m3 produced water per hour)	Lower limit is m3/hr for a 2"	s typically 5 ' diameter unit	Largest units built to date have capacity of 260 m3/hr (per single unit)		
	Gross Package volume (LxWxH)	Approx 2.2 x 0.07 x 0.2 m Approx 3.5 x 0.5 x 1.0 n				
	Operating weight	Approx 30 kg		Approx 1500 kg		
	CAPEX (€)	Approx €15,0	00 (duplex)	Approx €0,000 (duplex)		
	OPEX (€year)	Unknown – in operating data	nsufficient 1	Unknown – insufficient operating data		
	Cost per m3 produced water(€m3))				
Critical operational parameters	Must be at least 0.5 bar head available at inlet to pre-coalescer to drive liquid through unit. Pressure drop across unit during normal operation requires monitoring. Media is typically changed out when the pressure drop reaches 3 bar.					

Operational reliability, incl. information on downtime	Yet to be fully established as number of full scale units in service is limited. Field tests have shown that pilot scale units can operate reliably for 3 months or more before the media requires changing. Media changeout takes only a short time, after which the unit can be brought back in service. The technology is not recommended in applications where wax dropout occurs or where naphthanates are present in the produced water.				
	Remarks:				
Cross media	Air				
enects	Energy				
	Added chemicals	Certain oilfield chemicals should not injected upstream of the technology. In particular, deoilers injected upstream will have a detrimental effect on the coalescing performance, as the media strands can stick together as a result of chemical action.			
	Waste				

Other impacts	Health and safety	Disposal of oil wetted media needs to be considered. This can be packed into specially designed shipment containers for return to shore.				
	Maintenance interval & availability (% per year)	Pressure drop should be checked daily. Operational availabilit should be > 95%.				
Practical	General		Onshore / Offshore			
experience						
State of development	 ✓ Implemented offshore □ Used onshore ✓ Offshore field trials ✓ Testing 		Practical applicability: Applicable for both offshore and onshore applications. Easy to install.			
			Driving force for implementation (e.g. legislation, increased yield, improvement product quality):			
			Legislation, improvement in discharges to sea (reduction in oil discharged)			
			Example plants: Shell Pierce field (recently installed), offshore Brazil			
Literature source						

	Suitab	ole for	Removal Efficiency (%)		Reference to source documentation
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil	~	\checkmark	n.i.	n.i.	
- Dissolved oil	~	~	n.i.	n.i.	

Remark: The tail shaped pre-coalescer technology only promotes oil droplet growth and does not remove the oil in itself. Offshore trials have demonstrated that the use of the technology upstream can lead to significantly enhanced dispersed oil and dissolved oil removal. Oil droplet growth can be typically 400% growth in the median oil droplet size.

Specific oil components:				
- BTEX	n.i.	n.i.	n.i.	n.i.
- NPD	n.i.	n.i.	n.i.	n.i.
- PAH's 16 EPA	n.i.	n.i.	n.i.	n.i.
- Others (indicate)	n.i.	n.i.	n.i.	n.i.

Remark: Offshore analysis has shown that the use of the technology upstream of hydrocyclones has resulted in an improvement in the removal of both dispersed and dissolved (naphthalenes, 2-4 ring PAH and C6-C9 phenols) oil removal.

Heavy metals				
Offshore chemicals				
-	methanol			
-	glycol			
-	corrosion			
	inhibitors			
-	biocides			
-	scale inhibitors			
-	surfactants			
-	others (indicate)			