

Background Document concerning Techniques for the Management of Produced Water from Offshore Installations

OSPAR Convention

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the "OSPAR Convention") was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. The Contracting Parties are Belgium, Denmark, the European Union, Finland, France, Germany, Iceland, Ireland, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Convention OSPAR

La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. Les Parties contractantes sont l'Allemagne, la Belgique, le Danemark, l'Espagne, la Finlande, la France, l'Irlande, l'Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d'Irlande du Nord, la Suède, la Suisse et l'Union européenne.

Execu	tive Summary	4
Récap	itulatif	6
1.	Introduction	7
2	References	120
2. Annov	1: Resis for figures in fact shoets	120
Annex	1. Dasis for figures in fact sheets	121
1.	Model situations	121
2.	Cost figures	122
Table Table	 List of potential measures for the removal of heavy metals, dissolved oil, dispersed oil and offshore chemicals from produced water Examples of techniques that are currently available or emerging 	9
	for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution	11
Table	A - 1:Table down hole oil-water separation (DHS) - oil	13
Table	A - 2: Down Hole Oil-Water Separation (DHS) - gas	15
Table	A - 3: Mechanical water shut off	17
Table	A - 4: Chemical Water Shut off	19
Table	A - 5: Stainless steel tubing, flow lines, pipelines	21
Table	A - 6: Insulation of pipe lines	23
Table	A - 7: Coalescing Pump (Coalescer / Separator)	25
Table	B - 1: Overhead vapour combustion (OVC)	28
Table	B - 2: Fluid from condensor to production separator	30
Table	B - 3: Alternative methods of gas drying	32
Table	B - 4: Macro porous polymer extraction (MPPE) (partial flow)	34
Table	B - 5: Steam stripping (partial flow)	30
Table	B - 6: High pressure water condensate separator	38
Table	B - /: Methanol recovery unit	40
Table	B - 8: Labyrinth type choke valve B - 9: Twister supersonic separator	42
Table	D - 7. I wister supersonie separator	
Table	C - 1: Skimmer tank	46
Table	C - 2: Produced water re-injection (PWRI)	48
Table	C - 3: Dissolved gas/induced gas flotation (DGF/IGF)	50
Table	C - 4: Plate interceptors (PPI/CPI)	52
Table	C - 5: Hydrocyclones	54
Table	C - 6: Macro porous polymer extraction (MPPE) (end stream)	56
	C - /: Centrifuge	61
	C - 8: Steam stripping (end flow)	63
Table	C - 9: Adsorption filters	65
Table	C = 10: Memorane Intration	0/
Table	C = 11. V - 10X C = 12. Eilter coalescer	09 71
Table	C = 12. Find Codescer C = 13: Ctour process system	/1 72
Table	C - 13. Cour process system C - 14: In Vessel Coalescence Technology for Improved	13
1 4010	Performance of Deoiling Hydrocyclones	76
Table	C - 15: Compact Flotation Unit (CFU) Separation process	80

Table C - 16: Condensate induced extraction	85
Table C - 17: Tail shaped pre-coalescer	88
Table C - 18: Advanced Oxidation Process	91
Table C - 19: Screen (Cartridge Type) Coalescing Technique	94
Table C - 20: TwinZapp	96
Table C - 21: Fibra Cartridge	99
Table C - 22: Pertraction	102
Table C - 23: Ion Exchange	104
Table C - 24: Oxidation, Vertech	106
Table C - 25: Oxidation, Hydrogen Peroxide	108
Table C - 26: Oxidation, Ozone Treatment	109
Table C - 27: Oxidation, Electron Beam	111
Table C - 28: Oxidation, Sonolysis	113
Table C - 29: Oxidation, KMnO4	115
Table C - 30: Oxidation, Photocatalytic Oxidation	116
Table C - 31: Oxidation, Plasma	118

Executive Summary

This background document is related to OSPAR Recommendation 2001/1 for the Management of Produced Water from Offshore Installations and to OSPAR Recommendation 2012/5 for a risk-based approach to the Management of Produced Water Discharges from Offshore Installations. It contains brief descriptions of principles, basic elements and operational aspects of techniques which may be applied on offshore installations for the treatment of produced water.

An overview of various techniques for the removal of heavy metals, dissolved oil, dispersed oil and offshore chemicals from produced water is presented in Table 1. For a number of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution, fact sheets are presented. A short description of principles, basic elements, operational aspects and other factors relating to each type of these systems is presented in the tables A - 1 to C - 14. An overview of the techniques for which fact sheets have been prepared is presented in Table 2. This table contains examples of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution.

Although the physical and chemical principles of techniques described are generally applicable, the technical and economical features mentioned in the current version of this background document draw mainly on experience principally of operations in OSPAR Region II (Greater North Sea). The validity of the cost and technical data is therefore limited, and this should be taken into account when evaluating the applicability of techniques in other areas and in other circumstances.

It is the intention that this background document be revised to update the data as experiences with these techniques increase. Furthermore this background document is intended to be updated regularly in order to allow for the inclusion of descriptions of new techniques when these emerge.

Récapitulatif

Le présent document de fond concerne la Recommandation OSPAR 2001/1, sur la gestion de l'eau de production des installations offshore et la Recommandation OSPAR 2012/5 sur une approche basée sur le risque pour la gestion des rejets d'eau de production provenant des installations offshore. Il décrit brièvement les principes, les éléments de base et les aspects opérationnels des techniques susceptibles d'être appliquées à bord des installations offshore pour le traitement de l'eau de production.

Une vue d'ensemble des diverses techniques d'élimination des métaux lourds, des hydrocarbures dissous, des hydrocarbures dispersés et des produits chimiques d'offshore provenant de l'eau de production est présentée au tableau 1. Pour plusieurs des techniques disponibles ou émergentes pour le traitement de l'eau de production des installations pétrolières et gazières en offshore, à titre de partie intégrante des BAT/BEP, des fiches de caractéristiques sont présentées. Une brève description des types de ces systèmes est donnée aux tableaux A - 1 à C - 14. Une synthèse des techniques au titre desquelles des fiches de caractéristiques ont été dressées est présentée au tableau 2. Ce tableau donne des exemples des techniques disponibles ou émergentes pour le traitement de l'eau de production des installations pétrolières et gazières en offshore.

Bien que les principes physico-chimiques des techniques décrites soient généralement applicables, les caractéristiques techniques et économiques mentionnées dans la version actuelle du présent document de fond sont pour l'essentiel fondées sur l'expérience principalement acquise dans les opérations dans la région II d'OSPAR (mer du nord au sens large). De ce fait même, la validité des données de coût et des données techniques est limitée, ce point devant être pris en compte lorsque l'on juge de l'applicabilité des techniques dans d'autres régions et dans d'autres circonstances.

Il est prévu de revenir sur ce document de fond pour mettre à jour les données lorsque les expériences avec ces techniques auront été acquises. De plus, il est prévu d'actualiser régulièrement le présent document de fond afin d'y intégrer des descriptions des nouvelles techniques au fur et à mesure qu'elles apparaîtront.

1. Introduction

The planning and management of operations at offshore installations should be in accordance with the integrated approach. A "tailor-made" combination of BAT and BEP should be applied for produced water management on offshore oil and gas installations in order to prevent and minimise pollution by oil and other substances as much as reasonably achievable. Whereas BAT is mainly focusing at application of techniques, BEP focuses on environmental control measures and strategies (management options). Reference is made to the definition of BAT and BEP in Appendix 1 of the OSPAR Convention.

Produced water treatment techniques may either be based on the reduction of volume of produced water or on the reduction of the concentration of substances in produced water. Furthermore, techniques may be applicable for oil and/or gas installations. Some techniques are well established and may be considered as current BAT, or present techniques. Some systems cannot be regarded as BAT as such, but may form part of a BAT solution when applied in a series of treatment systems. Other systems should be considered as emerging techniques, which are candidates for inclusion in the list of techniques that may form part of BAT solutions for produced water in the future.

The definition of BAT, including a mechanism of how a set of processes, facilities and methods of operation should be evaluated with a view to determine whether these constitute the best available techniques in general or in individual cases, is described in Appendix 1 of the OSPAR Convention.

An overview of various techniques which may be applied for the treatment of (produced) water is presented in Table 1. Not all these techniques are currently suitable for the treatment of produced water on offshore installations, for various reasons. For a number of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution, fact sheets are presented in the tables A - 1 to C - 14. An overview of the techniques for which fact sheets have been prepared is presented in Table 2. This table contains examples of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution.

The cost and technical data in tables A - 1 to C - 14 of this background document draw mainly on experience principally of operations in OSPAR Region II (Greater North Sea). Estimates of performance and cost (see Annex 1) are based on model scenarios that reflect operations in this basin and are unlikely to be applicable rigorously in other areas. It is the intention that the tables in this background document be revised to include data on the applicability of techniques as experiences in the application of these techniques developed. Furthermore new tables on techniques mentioned in table 1, and not mentioned in tables A - 1 to C - 14 will be added in this background document in future updates of this document. The process of continuous updating will also allow for inclusion of (new) techniques when these emerge.

In view of the fact that the characteristics of produced water can be different from one installation to another and can vary widely both in the short and the long term at a single installation, the applicability of each type of system, or combination of systems, on a platform can only be evaluated on a case-by-case basis. Factors influencing the applicability of a system include, amongst other factors:

- the amount of produced water, which may increase in the course of the lifetime of an installation;
- the characteristics of the produced water flow;
- available deck space; and
- the need for and extent of retrofitting.

Moreover, techniques have intrinsic limitations and limitations relating to specific circumstances in which an offshore installation operates. The techniques in the tables are available techniques. A combination of techniques, selected on the basis of specific conditions and other factors, could form a "best available solution for the treatment of produced water" on an offshore installation or "best available package".

Irrespective of which method is considered and evaluated, it should be realised that the success of any method is dependent, amongst others, on the local environment in which it will be operated. The local reservoir conditions as well as the local operational conditions may strongly influence the effectiveness and operability of the method in question e.g. it cannot be concluded that a method, which has been operated successfully at one installation, may achieve the same results at another location.

Motion of floating installations may render gravity-separation devices less efficient under extreme conditions.

Physical/chemical aspects have not been taken into account: oil-water emulsions may break down more or less easily, depending on the composition of the oil and water. Again, this underlines the importance of case-by-case evaluations and the selection of treatment techniques for specific platforms should take this feature into account.

It is noted that the rows in the tables concerning the indication of costs of each technique contain estimates for the treatment of the indicated flows of produced water under certain circumstances only. Furthermore, it should be noted that the indicated (relative) costs stem from calculations based on predefined model situations. The definition of the model situations is applicable to a limited amount of offshore operations, it should be taken into account that these figures could vary from region to region or even from country to country. An evaluation of costs of application of a certain (series of) treatment technique(s) on a specific offshore installation, should be made on a case-by-case basis.

Cross-media effects and other impacts should also be considered when evaluating a system. Issues that may be covered by a cross-media effect evaluation include, but are not limited to, energy consumption, use of chemicals, waste production, fate and/or effect of substances in the effluent discharged that are not separated but may affect the treatment method and health and safety aspects.

For the assessment of the fate and / or effect of all substances present in the effluent discharged a risk based approach has been developed by the OSPAR Commission. In the OSPAR Recommendation 2012/5 for a risk-based approach to the Management of Produced Water Discharges from Offshore Installations, this approach is described. Based on techniques described in this document a choice can be made for the best risk reduction measures in order to manage those risks.

Table 1 List of potential measures for the removal of heavy metals, dissolved oil, dispersed oil and offshore chemicals from produced water

A. Preventive techniques	Membrane techniques
 Down-hole oil-water separation (DHWS) Down-hole gas-water separation (DHWS) Mechanical water shut-off Chemical water shut-off B. Process integrated techniques Methanol recovery unit Glycol regeneration (incl. Drizo) Overhead vapour combustion (OVC) Macro Porous Polymer Extraction (MPPE) (partial flow) 	 Micro-filtration Ultra-filtration Nano-filtration Membrane separator Reversed osmosis Pertraction Emulsion pertraction Electro-dialyse Membrane assisted affinity sorption (MAAS) Absorption / adsorption techniques
 High pressure condensate-water separation Steam stripping (glycol regeneration water) Insulation of pipelines Stainless steel lines and casks Alternative methods of gas drying (IFPEXOL etc.) Labyrinth type choke valve Glycol overheads backflow to separator Degassers 	 Absorption filter Granular active carbon Powder carbon Ion exchange Centrifugal absorption techniques Zeolites MPPE (end flow) MPPS Reusable oil adsorbent (RPA)
C. End of pipe techniques	Stripping techniques
 Conventional techniques Gas flotation (DGF/IGF) Flotation cells CPU compact flotation unit Plate separator (CPI/PPI) Hydrocyclone Axiflow cyclones Skimmer tank Centrifuge Disk stacked centrifuges Produced water re-injection (PWRI) Filter coalescer, incl. sand filters filters filled with oleophilic resins etc. Screen coalescers Pall coalescers In-line coalescing technology (incl. Mare's Tail and PECT-F) Performance enhancing coalescer fiber FU filter unit Integral plate packs in three phase separators 	 Steam stripping (end flow) Air stripping Gas stripping Evaporation Evaporation system Freezing concentration Oxidation techniques O₃ H₂O₂ Oxidation / neutralisation / de-watering (OND) Vertech KMnO₄ Natural air Electron beam Plasma Sonolysis Photo catalytic oxidation Low temperature hydro-thermal gasification (LTHG)
Biological techniques	
 Aerobic Bioreactor (anaerobic) Membrane bioreactor (MBR) Enzyme reactor Compost filter (glycol overhead) Bacterial treatment 	

Та	ble 1 Cont.						
Other techniques		Combination of techniques					
•	Multimedia filtration/coalescers	•	Flocculation & hydrocyclone				
•	Coagulation/flocculation	•	Cyclone & electro-coalescer				
•	Electro-coagulation	•	Glycol regeneration and steam stripping				
•	Electrolytic treatment						
•	Chalk precipitation						
•	Sulphide precipitation						
•	Grain reactor						
•	High gradient magnetic separation						
•	Pack of balls in PPI						
•	Monitoring en control						
•	Good operating practices						
•	Optimal application of CHARM						
•	Processes based on gas drying by adsorption						
•	Glycol cleaning						
•	Electrolysis						

Table 2 Examples of techniques that are currently available or emerging for the treatment of produced water from offshore oil and gas installations as part of a BAT/BEP solution

TablePagePresentEmergingPresentEmergingPreventive113 \times \times \times Downhole water separation - oilTable A - 113 \times \times Downhole water separation - gasTable A - 215 \times \times Mechanical water shut offTable A - 419 \times \times \times Staintees steel tubing, flow lines, pipelinesTable A - 725 \times \times \times Staintees steel tubing, flow lines, pipelinesTable A - 725 \times \times \times Process integrated, including splitTable B - 128 \times \times \times Stream treatmentOverhead Vapour Combustion (OVC)Table B - 128 \times \times \times Process integrated, including splitTable B - 230 \times \times \times \times Process integrated, including splitTable B - 332 \times \times \times \times Process integrated or gas dryingTable B - 434 \times \times \times \times Process intripping, split streamTable B - 536 \times \times \times \times Produced water reinpection (PWRI)Table B - 442 \times \times \times End of pipeTable C - 146 \times \times \times \times Simmer tankTable C - 248 \times \times \times \times Produced water reinpection (PWRI)Table C - 554 \times \times \times Produced water reinpection (Gas production *		Oil production	on *
PreventiveImage: Constraint or the second seco		Table	Page	Present	Emerging	Present	Emerging
PreventiveImage: Constraint of the const			_				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Preventive						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Downhole water separation - oil	Table A - 1	13			X	
Mechanical water shut offTable A - 317NNNChemical water shut offTable A - 521XXInsulation of pipelinesTable A - 623XXInsulation of pipelinesTable A - 623XXCodescing pump - separatorTable A - 725XXProcess integrated, including splitTable A - 725XXstream treatmentOverhead Vapour Combustion (OVC)Table B - 128XXProcess integrated, including splitTable B - 230XXseparatorTable B - 332XXXAtternative methods of gas dryingTable B - 332XXXMPPE (split stream)Table B - 638XXXMethanol recovery unitTable B - 740XXXEad of pipeTable B - 740XXXProduced water re-injection (PWRI)Table C - 146XXXProduced water re-injection (PWRI)Table C - 248XXXDGP/IGFTable C - 761XXXXPPI / CPI (gravitation separation)Table C - 763XXXPPI / CPI (gravitation separation)Table C - 761XXXPPI / CPI (gravitation separation)Table C - 763XXXPPI / CPI (gravitation separation)Table C - 163	Downhole water separation - gas	Table A - 2	15		Х		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mechanical water shut off	Table A - 3	17	X		X	
Stainless steel tubing, low lines, pipelinesTable A - 521XXInsulation of pipelinesTable A - 723XCoalescing pump - separatorTable A - 725XProcess integrated, including splitTable B - 128Xstream treatmentTable B - 128XOverhead Vapour Combusion (OVC)Table B - 230XFluid from condensor to productionTable B - 332XAtlemative methods of gas dryingTable B - 332XSteam stripping, split streamTable B - 638XMPP: (cplit stream)Table B - 638XMethanol recovery unitTable B - 740XEnd of pipeTable C - 146XXSkimmer tankTable C - 148XXProduced water co-injection (PWRI)Table C - 350XXPI/ (CPI (gravitation separation)Table C - 554XXMPPE (end stream)Table C - 556XXXPI/ (CPI (gravitation separation)Table C - 165XXMPE (end stream)Table C - 554XXMPE (end stream)Table C - 166XXXCornifigeTable C - 1067XXXMPE (end stream)Table C - 1067XX <td>Chemical water shut off</td> <td>Table A - 4</td> <td>19</td> <td>Х</td> <td></td> <td>Х</td> <td></td>	Chemical water shut off	Table A - 4	19	Х		Х	
Insulation of pipelines Table A - 6 23 X X Coalescing pump - separator Table A - 7 25 X X Process integrated, including split X X X Process integrated, including split X X X Separator Table B - 1 28 X X Separator Table B - 3 32 X X Atternative methods of gas drying Table B - 4 34 X X Steam stripping, split stream Table B - 5 36 X X He water condensate separator Table B - 7 40 X X End of gipe Table B - 7 40 X X X End of gipe Table B - 7 40 X X X End of gipe Table C - 1 46 X X X DGP/1GT Table C - 2 48 X X X PI/ CPI (gravitation separation) Table C - 2 50 X X	Stainless steel tubing, flow lines, pipelines	Table A - 5	21	Х		X	
Coalescing pump - separatorTable A - 725XProcess integrated, including split stream treatment	Insulation of pipelines	Table A - 6	23	Х			
Process integrated, including split stream treatmentJow Cr. 2Image: Stream treatmentOverhead Vapour Combustion (OVC)Table B - 128XFluid from condensor to production separatorTable B - 230Alternative methods of gas dryingTable B - 332XAlternative methods of gas dryingTable B - 434XSteam stripping, split streamTable B - 638XMPE (split stream)Table B - 638XSteam stripping, split streamTable B - 740XLabyrinh type choke valveTable B - 842XEnd of pipe </td <td>Coalescing pump - separator</td> <td>Table A - 7</td> <td>25</td> <td></td> <td></td> <td></td> <td>X</td>	Coalescing pump - separator	Table A - 7	25				X
Process integrated, including split stream treatment Image: Construction of the second se							
Overhead Vapour Combustion (OVC) Table B - 1 28 X Image: Comparison of the comparis	Process integrated, including split stream treatment						
Fluid from condensor to production Table B - 2 30 X separator Table B - 3 32 X Alternative methods of gas drying Table B - 4 34 X Steam stripping, split stream Table B - 6 38 X HP water condensate separator Table B - 6 38 X Methanol recovery unit Table B - 7 40 X Labyrinh type choke valve Table B - 7 40 X End of pipe Table B - 8 42 X Skimmer tank Table C - 1 46 X X Produced water re-injection (PWRI) Table C - 2 48 X X DGP/GF Table C - 3 50 X X Produced water re-injection (PWRI) Table C - 4 52 X X DGP/AGF Table C - 5 54 X X Methonanon MPE (end stream) Table C - 6 56 X X X Gentringe Table C - 10 67 X X X Steam stripping, end stream Table C - 11 <td< td=""><td>Overhead Vapour Combustion (OVC)</td><td>Table B - 1</td><td>28</td><td>Х</td><td></td><td></td><td></td></td<>	Overhead Vapour Combustion (OVC)	Table B - 1	28	Х			
separator Table B - 3 32 X Alternative methods of gas drying Table B - 3 32 X Alternative methods of gas drying Table B - 4 34 X Steam stripping, split stream Table B - 6 38 X HP water condensate separator Table B - 6 38 X Methanol recovery unit Table B - 7 40 X Ead off pipe	Fluid from condensor to production	Table B - 2	30	X			
Alternative methods of gas dryingTable B - 332XMPPE (split stream)Table B - 434XSteam stripping, split streamTable B - 536XHP water condensate separatorTable B - 638XMethanol recovery unitTable B - 740XLabyrinh type choke valveTable B - 842XEnd of pipeSkimmer tankTable C - 146XXProduced water re-injection (PWRI)Table C - 248XXDG/F/GFTable C - 350XXXPDI /CPI (gravitation separation)Table C - 452XXHydrocyclonesTable C - 554XXXMPPE (end stream)Table C - 666XXXSteam stripping, end streamTable C - 1067XXXSteam stripping, end streamTable C - 1169XXXContractTable C - 1173XXCCyclotechTable C - 1580XXXCondensate induced extractionTable C - 1788XXConderset induced extractionTable C - 1891XXCondensate induced extractionTable C - 2119XXCondensate induced extractionTable C - 1065XXCondensate induced extractionTable C - 11691XXCondensate indud	separator		20				
MPPE (split stream) Table B - 4 34 X Steam stripping, split stream Table B - 5 36 X HP water condensate separator Table B - 6 38 X Methanol recovery unit Table B - 7 40 X Labyrink type choke valve Table B - 8 42 X End of pipe	Alternative methods of gas drving	Table B - 3	32	Х			
Steam stripping, split streamTable B - 536XHP water condensate separatorTable B - 638XHe water condensate separatorTable B - 740XLabyrinth type choke valveTable B - 842XEnd of pipeSkimmer tankTable C - 146XXProduced water re-injection (PWRI)Table C - 248XXDGF/IGFTable C - 350XXXPDI / CPI (gravitation separation)Table C - 452XXMPPE (end stream)Table C - 656XXXMPPE (end stream)Table C - 761XXXSteam stripping, end streamTable C - 965XXXMembrane filtrationTable C - 1067XXXFilter coalescerTable C - 1169XXXCrourTable C - 1271XXXCondensate induced extractionTable C - 1476XXXCondenstei induced extractionTable C - 1788XXXCondenstei induced extractionTable C - 1994XXAdvanced oxidation processTable C - 1994XXCondenstei induced extractionTable C - 1994XXCondenstei induced extractionTable C - 1994XXDisplanet induced extractionTable C - 1994 </td <td>MPPE (split stream)</td> <td>Table B - 4</td> <td>34</td> <td>X</td> <td></td> <td></td> <td></td>	MPPE (split stream)	Table B - 4	34	X			
HP water condensate separator Table B - 6 38 X X Methanol recovery unit Table B - 7 40 X X Labyrinh type choke valve Table B - 8 42 X X End of pipe	Steam stripping, split stream	Table B - 5	36	Х			
Methanol recovery unit Table B - 7 40 X X Labyrinh type choke valve Table B - 8 42 X X End of pipe	HP water condensate separator	Table B - 6	38	Х			
Labyrinh type choke valveTable B - 842XEnd of pipe	Methanol recovery unit	Table B - 7	40	Х			
End of pipeImage: Constraint of the second state of the seco	Labyrinth type choke valve	Table B - 8	42		Х		
End of pipeTable C - 146XXSkimmer tankTable C - 248XXDGF/IGFTable C - 350XXDGF/IGFTable C - 452XXPFI / CPI (gravitation separation)Table C - 452XXHydrocyclonesTable C - 656XXMPPE (end stream)Table C - 761XXCentrifugeTable C - 761XXSteam stripping, end streamTable C - 965XXMembrane filtrationTable C - 1067XXV-TexTable C - 1169XXXCondenseerTable C - 1271XXCloucTable C - 1373XXXCyclotchTable C - 1685XXXCompact flotationTable C - 1788XXXTail shaped pre-coalescerTable C - 1994XXAdvanced oxidation processTable C - 1994XXTail shaped pre-coalescingTable C - 2199XXTable C - 22102XXXOxidation - Hydrogen peroxideTable C - 25108-Oxidation - OzoneTable C - 2096XXOxidation - PetrocolescingTable C - 24106-Oxidation - PetrocolescingTable C - 25108-Oxidation - PetrocolescingT							
Skimmer tank Table C - 1 46 X X Produced water re-injection (PWRI) Table C - 2 48 X X DGF/IGF Table C - 3 50 X X PPI / CPI (gravitation separation) Table C - 5 54 X X Hydrocyclones Table C - 5 54 X X MPPE (end stream) Table C - 6 56 X X Centrifuge Table C - 7 61 X X Adsorption filter Table C - 8 63 X X Membrane filtration Table C - 10 67 X X V-Tex Table C - 12 71 X X Filter coalescer Table C - 13 73 X X Cyclotech Table C - 15 80 X X Condensate induced extraction Table C - 17 88 X X Tail shaped pre-coalescer Table C - 18 91 X X Condensate induced extraction <td>End of pipe</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	End of pipe						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Skimmer tank	Table C - 1	46	Х		X	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Produced water re-injection (PWRI)	Table C - 2	48	Х		X	
PPI / CPI (gravitation separation) Table C - 4 52 X X Hydrocyclones Table C - 5 54 X X MPPE (end stream) Table C - 6 56 X X Centrifuge Table C - 7 61 X X Steam stripping, end stream Table C - 8 63 X X Adsorption filter Table C - 10 67 X X Membrane filtration Table C - 10 67 X X V-Tex Table C - 11 69 X X Filter coalescer Table C - 13 73 X X Crour Table C - 14 76 X X X Condensate induced extraction Table C - 15 80 X X X Condensate induced extraction Table C - 18 91 X X X Advanced oxidation process Table C - 20 96 X X X Fibra Cartridge type) coalescing Table C - 21	DGF/IGF	Table C - 3	50	Х		X	
Hydrocyclones Table C - 5 54 X X MPPE (end stream) Table C - 6 56 X X Centrifuge Table C - 7 61 X X Steam stripping, end stream Table C - 8 63 X X Adsorption filter Table C - 9 65 X X X Membrane filtration Table C - 10 67 X X X V-Tex Table C - 12 71 X X X Colacser Table C - 13 73 X X X Cyclotech Table C - 14 76 X X X Compact flotation Table C - 16 85 X X X Condensate induced extraction Table C - 17 88 X X X Screen (cartridge type) coalescing Table C - 20 96 X X Fibra Cartridge Table C - 21 99 X X X Pertraction T	PPI / CPI (gravitation separation)	Table C - 4	52	Х		Х	
MPPE (end stream)Table C - 656XXCentrifugeTable C - 761X X Steam stripping, end streamTable C - 863X X Adsorption filterTable C - 965X X Membrane filtrationTable C - 1067XXV-TexTable C - 1169XXFilter coalescerTable C - 1271XXCTourTable C - 1373X X Corpact flotationTable C - 1476XXCondensate induced extractionTable C - 1685XXTails apade pre-coalescerTable C - 1788XXAdvanced oxidation processTable C - 1994XXScreen (cartridge type) coalescingTable C - 2096XXFibra CartridgeTable C - 2199XXXIon exchangeTable C - 22102XXOxidation - VertechTable C - 23104104104Oxidation - Hydrogen peroxideTable C - 27111111103Oxidation - BeamTable C - 28113113104104Oxidation - Photocatalytic oxidationTable C - 29115116104Oxidation - Photocatalytic oxidationTable C - 20116106104Oxidation - Photocatalytic oxidationTable C - 27111111114Oxidation - Hydrogen peroxideTable C - 27<	Hydrocyclones	Table C - 5	54	Х		Х	
CentrifugeTable C - 761XImage: control of the second s	MPPE (end stream)	Table C - 6	56	Х			X
Steam stripping, end streamTable C - 8 63 XAdsorption filterTable C - 9 65 XMembrane filtrationTable C - 10 67 XXV-TexTable C - 11 69 XXFilter coalescerTable C - 12 71 XXCrourTable C - 13 73 XCyclotechTable C - 14 76 XXCompact flotationTable C - 15 80 XXCondensate induced extractionTable C - 16 85 XXTail shaped pre-coalescerTable C - 17 88 XXAdvanced oxidation processTable C - 18 91 XXScreen (cartridge type) coalescingTable C - 20 96 XXTwinZappTable C - 21 99 XXXPertractionTable C - 22 102 XXIon exchangeTable C - 23 104 Oxidation - VertechTable C - 25 108 Oxidation - Hydrogen peroxideTable C - 26 109 XOxidation - MnO4Table C - 28 113 Oxidation - Photocatalytic oxidationTable C - 30 116 Oxidation - PlasmaTable C - 31 118	Centrifuge	Table C - 7	61	X			
Adsorption filterTable C - 965XMembrane filtrationTable C - 1067XXV-TexTable C - 1169XXV-TexTable C - 1271XXCTourTable C - 1373XXCyclotechTable C - 1476XXCompact flotationTable C - 1580XXCondensate induced extractionTable C - 1685XXCall and the condensate induced extractionTable C - 1788XXAdvanced oxidation processTable C - 1994XXScreen (cartridge type) coalescingTable C - 2096XXTwinZappTable C - 2199XXXPertractionTable C - 23104XXXOxidation - VertechTable C - 24106000Oxidation - VertechTable C - 27111100Oxidation - MayoneTable C - 28113000Oxidation - Pentor beamTable C - 28113000Oxidation - Photocatalytic oxidationTable C - 2011600Oxidation - Photocatalytic oxidationTable C - 2711100Oxidation - Hydrogen persoriaTable C - 2711100Oxidation - Photocatalytic oxidationTable C - 2811300Oxidation - Photocatalytic oxidationTabl	Steam stripping, end stream	Table C - 8	63	X			
Membrane filtrationTable C - 10 67 XXV-TexTable C - 11 69 XXFilter coalescerTable C - 12 71 XXCrourTable C - 13 73 XCyclotechTable C - 14 76 XXCompact flotationTable C - 15 80 XCondensate induced extractionTable C - 16 85 XXTail shaped pre-coalescerTable C - 17 88 XXAdvanced oxidation processTable C - 18 91 XXScreen (catridge type) coalescing techniqueTable C - 20 96 XXTwinZappTable C - 21 99 XXXPertractionTable C - 22 102 XXIon exchangeTable C - 23 104 Oxidation - VertechTable C - 25 108 Oxidation - OzoneTable C - 27 111 Oxidation - Photocatalytic oxidationTable C - 29 116 Oxidation - Photocatalytic oxidationTable C - 29 116 Oxidation - PlasmaTable C - 20 116	Adsorption filter	Table C - 9	65	X			
V-TexTable C - 1169XXXFilter coalescerTable C - 1271XXXCTourTable C - 1373XXCyclotechTable C - 1476XXXCompact flotationTable C - 1580XXCondensate induced extractionTable C - 1685XXXTail shaped pre-coalescerTable C - 1788XXXAdvanced oxidation processTable C - 1994XXXScreen (cartridge type) coalescing techniqueTable C - 2096XXTwinZappTable C - 2199XXXPetractionTable C - 2199XXXOxidation - VertechTable C - 23104Oxidation - VertechTable C - 26109XOxidation - Rabin OzoneTable C - 27111Oxidation - Photocatalytic oxidationTable C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 30116	Membrane filtration	Table C - 10	67		X		X
Filter coalescerTable C - 1271XXCTourTable C - 1373XCyclotechTable C - 1476XXCompact flotationTable C - 1580XCondensate induced extractionTable C - 1685XXTail shaped pre-coalescerTable C - 1788XXAdvanced oxidation processTable C - 1891XXScreen (cartridge type) coalescing techniqueTable C - 2096XTwinZappTable C - 2199XXFibra CartridgeTable C - 22102XXOxidation - VertechTable C - 2310404Oxidation - VertechTable C - 26109X100Oxidation - CooneTable C - 27111100Oxidation - Netton beamTable C - 28113100Oxidation - Photocatalytic oxidationTable C - 29115100Oxidation - Photocatalytic oxidationTable C - 3011600Oxidation - PlasmaTable C - 31118118100	V-Tex	Table C - 11	69		X	X	
CTourTable C - 1373XCyclotechTable C - 1476XXCompact flotationTable C - 1580XCondensate induced extractionTable C - 1685XXTail shaped pre-coalescerTable C - 1788XXAdvanced oxidation processTable C - 1891XXScreen (cartridge type) coalescing techniqueTable C - 1994XXTwinZappTable C - 2096XXFibra CartridgeTable C - 2199XXXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 25108Oxidation - OzoneTable C - 27111Oxidation - BeamTable C - 27111Oxidation - KMnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Filter coalescer	Table C - 12	71		X		X
CyclotechTable C - 1476XXCompact flotationTable C - 1580XCondensate induced extractionTable C - 1685XXTail shaped pre-coalescerTable C - 1788XXAdvanced oxidation processTable C - 1891XXScreen (cartridge type) coalescingTable C - 1994XXtechniqueXXXTwinZappTable C - 2096XFibra CartridgeTable C - 2199XXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 25108Oxidation - OzoneTable C - 27111Oxidation - sonolysisTable C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	CTour	Table C - 13	73		X		
Compact flotationTable C - 1580XCondensate induced extractionTable C - 1685XXTail shaped pre-coalescerTable C - 1788XXAdvanced oxidation processTable C - 1891XXScreen (cartridge type) coalescing techniqueTable C - 1994XXTwinZappTable C - 2096XXFibra CartridgeTable C - 2199XXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 24106Oxidation - GzoneTable C - 27111Oxidation - SonolysisTable C - 28113Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Cyclotech	Table C - 14	76	X		X	
Condensate induced extractionTable C - 1685XXTail shaped pre-coalescerTable C - 1788XXAdvanced oxidation processTable C - 1891XXScreen (cartridge type) coalescing techniqueTable C - 1994XXTwinZappTable C - 2096XXFibra CartridgeTable C - 2199XXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 25108Oxidation - electron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - Photocatalytic oxidationTable C - 29115Oxidation - PlasmaTable C - 29118	Compact flotation	Table C - 15	80			X	
Tail shaped pre-coalescerTable C - 1788XXXAdvanced oxidation processTable C - 1891XXXScreen (cartridge type) coalescing techniqueTable C - 1994XXTwinZappTable C - 2096XXFibra CartridgeTable C - 2199XXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 25108Oxidation - electron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Condensate induced extraction	Table C - 16	85	X		X	
Advanced oxidation processTable C - 1891XXScreen (cartridge type) coalescing techniqueTable C - 1994XXTwinZappTable C - 2096XXFibra CartridgeTable C - 2199XXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 25108Oxidation - Hydrogen peroxideTable C - 26109XOxidation - electron beamTable C - 27111Oxidation - KMnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Tail shaped pre-coalescer	Table C - 17	88	X		X	
Screen (cartridge type) coalescing techniqueTable C - 1994XTwinZappTable C - 2096XFibra CartridgeTable C - 2199XPertractionTable C - 22102XIon exchangeTable C - 23104Oxidation - VertechTable C - 25108Oxidation - Hydrogen peroxideTable C - 26109XOxidation - lectron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - MnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Advanced oxidation process	Table C - 18	91		X		X
IterniqueTable C - 2096XTwinZappTable C - 2199XXFibra CartridgeTable C - 2199XXPertractionTable C - 22102XXIon exchangeTable C - 23104Oxidation - VertechTable C - 24106Oxidation - Hydrogen peroxideTable C - 25108Oxidation - OzoneTable C - 26109XOxidation - electron beamTable C - 27111Oxidation - SonolysisTable C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Screen (cartridge type) coalescing	Table C - 19	94			X	
TwinZapp Table C - 20 96 Image X Fibra Cartridge Table C - 21 99 X X Pertraction Table C - 22 102 X Image Ion exchange Table C - 23 104 Image Image Oxidation - Vertech Table C - 24 106 Image Image Oxidation - Hydrogen peroxide Table C - 25 108 Image Image Oxidation - Ozone Table C - 26 109 X Image Oxidation - electron beam Table C - 27 111 Image Image Oxidation - sonolysis Table C - 28 113 Image Image Oxidation - Photocatalytic oxidation Table C - 30 116 Image Image Oxidation - Plasma Table C - 31 118 Image Image Image		T 11 C 20	06				V
Fibra CartridgeTable C - 2199XXPertractionTable C - 22102XImage: Constraint of the co	TwinZapp Films Carteidae	Table C - 20	96		v		X
PertractionTable C - 22102XIon exchangeTable C - 23104Oxidation - VertechTable C - 24106Oxidation - Hydrogen peroxideTable C - 25108Oxidation - OzoneTable C - 26109XOxidation - electron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - KMnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Fibra Cartridge	Table $C = 21$	99		X		X
Ion exchangeTable C - 25104ImageOxidation - VertechTable C - 24106ImageOxidation - Hydrogen peroxideTable C - 25108ImageOxidation - OzoneTable C - 26109XOxidation - electron beamTable C - 27111ImageOxidation - sonolysisTable C - 28113ImageOxidation - KMnO4Table C - 29115ImageOxidation - Photocatalytic oxidationTable C - 30116ImageOxidation - PlasmaTable C - 31118Image		Table C - 22	102		X		
Oxidation - VerteenTable C - 24106Oxidation - Hydrogen peroxideTable C - 25108Oxidation - OzoneTable C - 26109XOxidation - electron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - KMnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Ovidation Vartaah	Table C - 23	104				
Oxidation - Hydrogen peroxideTable C - 25108Oxidation - OzoneTable C - 26109XOxidation - electron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - KMnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Oxidation Hudrogen perovide	Table C - 24	100				
Oxidation - OzoneTable C - 20107AOxidation - electron beamTable C - 27111Oxidation - sonolysisTable C - 28113Oxidation - KMnO4Table C - 29115Oxidation - Photocatalytic oxidationTable C - 30116Oxidation - PlasmaTable C - 31118	Oxidation - Ozone	Table C -23	108		v	1	
Oxidation - cleation beam Table C - 27 111 Oxidation - sonolysis Table C - 28 113 Oxidation - KMnO4 Table C - 29 115 Oxidation - Photocatalytic oxidation Table C - 30 116 Oxidation - Plasma Table C - 31 118	Ovidation – electron beam	Table C 27	109		Λ	1	
Oxidation - Solidiyans Table C - 20 113 Oxidation - KMnO4 Table C - 29 115 Oxidation - Photocatalytic oxidation Table C - 30 116 Oxidation - Plasma Table C - 31 118	Oxidation - electron beam	Table C - 27	111			1	+
Oxidation Photocatalytic oxidation Table C - 30 116 Oxidation - Plasma Table C - 31 118	Oxidation – $KMnO4$	Table C - 20	115			1	
Oxidation - Plasma Table C - 31 118	Oxidation - Photocatalytic oxidation	Table $C = 29$	115				
	Oxidation - Plasma	Table C - 31	118				

PPI / CPI
DGF / IGF
HP
MPPE

Parallel Plate Interceptor / Corrugated Plate Interceptor (gravitation separation)

Dissolved Gas Flotation / Induced Gas Flotation

= High Pressure

=

=

= Macro Porous Polymer Extraction

* Although a distinction is made in this table between oil and gas producing installations, the limits of applicability of specific techniques may not be as rigid. These limits are, amongst other factors, dependent on the composition of the oil / condensate / gas and water produced.

Table A - 1: Table down hole oil-water separation (DHS) - oil													
Principle	DHS for oil is a technique in which the production of an oil-water mix at the bottom of a production well is separated by a hydrocyclone. Separated water is injected into a suitable underground zone and the remaining oil-water mix is pumped to the surface. In this way, the amount of produced water can be reduced by more than 50%. This will result in a higher oil production, a relatively low water production and the use of less chemicals. The discharge and treatment of produced water is considerably reduced or the water injection installation could be considerably decreased.												
Process diagram													
	production zone												
Basic elements	Pump(s), hydrocyclone(s), additional perforations and	e-motor, l packers)	seals, instrumentation and cha	nges in the	e well (deepening of well a	nd /or							
Suitable for the	Heavy metals	R [%]	Production chemicals	R [%]	Oil	R [%]							
removal of:	Cadmium	50	□ Methanol		Dissolved oil	50							
$\mathbf{D} = \mathbf{m}$	Zinc	50	□ Glycols		■ BTEX	50							
efficiency	Lead	50	Corrosion inhibitors	50 50	Benzene	50 50							
	Mercury	50	Anti-scale solutions	50 25	■ PAHs	50							
	Nickel	30	Demulsifiers	55	Dispersed oil	R [%]							
					■ Oil	50							
	<i>Remarks:</i> The 50% reduction is base to be added, although the u	d on a 50 ⁰ ise of den	1 % effectiveness of the hydrocy nulsifiers is usually not proport	clone in th	ne well. Less offshore chem maller.	icals need							
Technical details	Type of installation				Oil								
	Produced water volume (d	esign)			175 m ³ /h								
	Required area for injection	i vs. watei	r treatment installation		less								
Critical	The availability of a suitab	le water :	niection zone, which allows for	r fracturio	silialiei a as well as an appropriate	well							
operational parameters	configuration is a prerequi into the water phase and m The composition of the inj must be sufficiently isolate seldom suitable in horizon	site for th ay plug th ection wa ed. The di- tal wells.	e application of this technique. ne injection zone. DHS is only ter must be compatible with th ameter of the casings must be l	Produced suitable fo e injection arge enou	g, as well as an appropriate solid materials are separate or oil > 20 °API and a wate a zone. Production and inject gh to allow for a DHS syste	ed largely r cut >50%. ction zones em. DHS is							
Operational reliability	Results presented are varia one third of the failures wa for more than 2 years, whi half that of a standard pum	ble: only as the resu le others f ap installa	60% of the test installations pr ilt of plugging of the injection : failed within a few days. The li tion.	oduce mo zone. Som fe span of	re oil than previous installa e installations have been op a DHS installation is estim	tions, and perational ated to be							

Indication of costs										
	Costs	Investment costs ([€]			CAPEX)	Explo	itation c [€ / v	costs (C vear]	OPEX)	
		prese	nt		new	present		new		
	gas platform, small	n.a.			n.a.	n.a.			n.a.	
	gas platform, large	n.a.			n.a.	n.a.			n.a.	
	oil platform	2 450 000			1 290 000	959 400)	52	23 000	
	Cost/kg removed	Gas platform, small			Gas platfor	m, large	arge Oil p		latform	
		Existing	New		Existing	New	Exist	ting	New	
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/k	(g]	[€/kg]	
	dissolved oil						140	60	796	
	dispersed oil	n.a.	n.a.		n.a.	n.a.	88	3	48	
	zinc equivalents						41 2	261	22 494	
	Remarks:			2						
	Costs were presented for one DHS installation of 50 m ⁻ /h. In order to reduce a nominal water production of 150 m ³ /h by 50%, a minimum of 3 DHS installations would be required. Depreciation in the OPEX for an existing offshore installation is based on deepening an existing well and installing a liner ad. \notin 2 MM. Costs for a workover of a DHS installation were estimated at \notin 550 000. Cuts on costs for reduced energy consumption on an existing offshore installation were not taken into account, neither was additional production of wells that are not producing on maximum capacity. For new offshore installations, large savings may be possible regarding the									
Cross media effects	Air	Decre diesel	Decreased energy use leads to decreased air emissions, especially when diesel fuel is used.							
	Energy	Decrea decrea inject	Decreased energy use for water transport pumps. Possible increased or decreased energy use for the pumps in the well, depending on the required injection pressure.							
	Added chemicals	Possil	Possibly scale inhibitor or acid to stimulate the injection zone.							
	Waste	The d the wa (NOR	The decreased water through flow should result in a decrease in sludge in the water treatment installation. The sludge is often slightly radioactive (NORM).							
Other impacts	Safety	Slight	increase i	n vie	ew of increased	number of w	orkovers	5.		
	Maintenance	Maint will d every	Maintenance of the water treatment installation for existing installations will definitely decrease. Replacement of the DHS installation on average every 1.5 years.							
Practical	Genera	1				Offsh	ore			
experience	The results to date are very variations of the considered very promising but i development stage.	able. The tee s still in the	chnique is]	DHWS is mostly water treatment	y used onsho capacity is li	re, in sit mited.	tuations	s where the	
Conclusion	□ BAT			Emerging Candidate for BAT, very promising technique						
Literature source	[1]									

Table A - 2: Do	wn hole oil-water sepa	ration (I	OHS) - gas						
Principle	1	X	, 0						
Process diagram			oil						
Process diagram		productic	n zone	n lines g (cemented of uction pump sealing tor sealing ion pump ocyclone sepa	or external packer Irator oil + water water)			
Basic elements	Pump(s), hydrocyclone(s), well (deepening of well ar	, e-motor [,] id /or addi	with variable number of revolu tional perforations and packer	utions, seals	s, instrumentat	ion and chang	ges in the		
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] 50-100 50-100 50-100 50-100 50-100	pr additional perforations and packer [%] Production chemicals)-100 Methanol)-100 Glycols)-100 Corrosion inhibitors)-100 Anti-scale solutions)-100 Demulsifiers		Oil Dissolved BTEX Benzene PAHs Dispersed oi	l oil	R [%] 50-100 50-100 50-100 50-100 R [%]		
	Remarks:The 50-100% removal efficiency is applicable to the amount of formation water, which is 25-50% of the total water production. E.g.: if 50% of the formation water production $(1,4 \text{ m}^3/\text{h})$ stems from one well, DHWS will reduce the total water production from this well by 75% x 50% x 1,4 m ³ = 0,53 m ³ /h. Reduction of chemicals is less than proportionate. Lower salt concentrations lead to more oil/water emulsions, in some cases leading to increased use of demulsifiers and higher dispersed/dissolved oil concentrations. Lower salt concentrations will lead to increased use of methanol/glycol (hydrate inhibitors). A large part of the condensation water will be produced (depending on								
Technical details	Type of installation Produced water volume (design) Required area for injection vs. water treatment installation Mass of equipment for injection vs. water treatment installation			Gas 1 1 m ³ /h n.a. n.a.		Gas 2 6 m ³ /h less lower			
Critical operational parameters	DHS is only suitable for ga condensate) injection and injection water must be co must be adequately isolate production zone.	as wells w for fractur mpatible d. Depres	with little condensate production ring and suitable (existing) well with the injection zone (swelling surising the well in order to put	on. Presence Il configura ng of clay e Ill the injec	e of a suitable l ations is require etc.). Production tion pump may	ayer for wate ed. Compositi on and injection of cause damage	r (and on of on zones ge to the		
Operational reliability	From the few references it sand or clay particles, which	is eviden ch could p	t that results vary. Problems molug the injection zone.	ay be expe	cted when proo	duced water c	ontains		

									ī		
Indication of costs											
	Costs	Inves	stment costs	(CA	APEX)	Explo	itation c	costs (O)PEX)		
		proco	[ŧ]			present	tt/y	/earj			
	ass platform small	preser	<u>n</u>		new	present			new		
	gas platform large	2 550 (n.a.		11.a. 390 000	11.a. 890.600	n	4.	11.a. 44.200		
	oil platform	2 550 0 n.a.	00	1	n.a.	n.a.	,		n.a.		
			I		li.u.		I		11.u.		
	Cost/kg removed	Gas plat	form, small		Gas platfor	m, large	(Oil platform			
		Existing	New		Existing	New	Exist	ting	New		
		[€/kg]	[€/kg]		[€/kg]	[€/kg]	_ [€/k	(g]	[€/kg]		
	dissolved oil	n.c.	n.c.		1 320	659	n.a	a.	n.a.		
	dispersed oil				4 842	2 415					
	zinc equivalents	<u> </u>	<u> </u>		64 438	32 635					
	Remarks:										
	Costs have been included for a DHS installation of 0,7 m ³ /h, although an installation for 2 m ³ /h would cost lit extra. In order to achieve a 75% reduction of formation water, each well would have to be fitted with a DHS installation. Depreciation in the OPEX for an existing offshore installation is based on deepening an existing and installing a liner ad. \notin 2 MM. Costs for a workover of a DHWS installation were estimated at \notin 4 000 000 The reduction of condensate production was not taken into account.								l cost little a DHS xisting well 000 000.		
Cross media effects	Air	Higher energy consusing diesel fuel.			nption will incr	ease air emis	ssions, e	special	lly when		
	Energy	Energy consumptio injection pressure a			for the pumps i d the amount of	n the well de water.	pends of	on the re	equired		
	Added chemicals	Possib	ly scale inhi	ibite	or or acid to stin	mulate the in	jection 2	zone.			
	Waste	The de the wa (NOR	The decreased water through flow should result in a decrease in sludge in the water treatment installation. The sludge is often slightly radioactive (NORM).								
Other impacts	Safety	Slight	increase in ·	viev	w of increased 1	number of wo	orkovers	s.			
	Maintenance	Mainte will de	enance of the	e wa reas	vater treatment i se. Replacemen	installation fo it of the DHS	or existii S installa	ng insta ation ev	allations /ery 2 years.		
Practical	General	<u> </u>		L		Offsh	ore				
experience	There are few references. The te of development.	chnique is in	n the phase	It fi p	t is expected that irst. Currently, preferred.	at this technic pumping of v	que will water to	be test the sur	ed onshore face is		
Conclusion	D BAT]∎	Emerging Car	ndidate for B	AT	_			
Literature source	[1]										

Table A - 3: Mechanical water shut-off												
Principle	When water breakthrough occurs in oil or gas production, production zones with high water cuts can be sealed by installing mechanical barriers. This may, dependent on well configuration, be achieved by mechanical or inflatable plugs, cementing, placement of a patch (expansion pipe) or pack-off, possibly in combination with chemical treatment (see table on Chemical water shut off). If total sealing of the water production is not desired, a regulating mechanism or restriction plate may be placed in the well.											
Process diagram												
	production 2		– oil (or gas) + water									
	production zone production zone	1	plug	- oil (or gas) + water - water carrying zone (de-watered or fault in								
	Machanical plugs compart	page off	ata									
Basic elements	Preferably, the process of produce large amounts of	, pack-off completio water, e.g	etc. n of a well takes into account t . by cementing casings.	he possibilit	y of se	ealing of zones	which may					
Suitable for the	Heavy metals	R [%]	Production chemicals	R [%]	Oil		R [%]					
removal of:		50-75	■ Methanol	<55	Dis	ssolved oil	50-75					
	■ Zinc	50-75	■ Glycols	<55	BT	ΈX	50-75					
R = removal	■ Lead	50-75	Corrosion inhibitors	50-75	Be	nzene	50-75					
efficiency	Mercury	50-75	Anti-scale solutions	50-75	PA	Hs	50-75					
	■ Nickel	50-75	Demulsifiers	15-35	Dispe	rsed oil	R [%]					
					Oil	1	50-75					
	Remarks:											
	The effectiveness of a seal e.g. the sealing around the concentrations lead to mor dispersed/dissolved oil cor (hydrate inhibitors). Forma	ing is dep casing or re oil/wate ncentration ation wate	endent on successfully installir liner. Reduction of chemicals is er emulsions, in some cases lead ns. Lower salt concentrations w er will inevitably be produced in	ng the plug a is less than p ding to incre vill lead to in n view of nat	and the propor eased u ncrease tural y	e way the well tionate. Lower use of demulsif ed use of meth water saturation	was completed, salt iers and higher anol/glycol n (conate water).					
Technical details	Type of installation			Gas 1		Gas 2	Oil 1					
	Produced water volume (d	esign)		1 m ³ /h	L	6 m ³ /h	175 m ³ /h					
	Area required for water tre	eatment		less		less	less					
	Mass of equipment for wat	ter treatm	ent installation	lower		lower	lower					
Critical operational parameters	Study is required to identif Mechanical water shut off more difficult and more ex	fy the sour is mainly pensive.	rce of water production and red applicable for multi-layer rese Possible leakage of existing sea	luce the risk rvoirs. In ho dings around	of plu orizont d casii	agging the proc tal wells, this te ng (cement or p	luction. echnique is often backer) may					
	reduce the effect of the sea lines. Inflatable plugs and production loss.	aling. Proc some pate	duction lines must be pulled ou thes are resistant to limited pre-	t unless infla ssures. Some	atable etimes	plugs can be p water sealing	laced via these leads to					
Operational	The reliability of mechanic	cal and ce	ment plugs is modest, absolute	certainty ab	out cl	osing in water	is rare.					
reliability	Dependent on the well com plugs and pack-offs are less because of salt deposition	figuration reliable	h, the rate of success is 40-70% (failure by high pressure or da	(closer to 4 mage). When	0% fo n a pa	r gas installatio tch doesn't sea	ons). Inflatable Il well, e.g.					
Technical details Critical operational parameters Operational reliability	■ Lead $50-75$ Mercury $50-75$ Nickel $50-75$ 15-75 50-75 50-75 50-75 50-75 15-35											

Indication of									
costs	Contr	Investm	ant agata		Evalo	itation	anata (O	DEV)	
	Costs	mvestm	ent costs [€]	(CAPEA)	Explo	nation (r \ €]	vearl	PEA)	
		present		new	present	t new		new	
	gas platform, small	200 000-800 (000	n.a.	50 800-209	9 200 n		n.a.	
	gas platform, large	200 000-800	000	n.a.	48 800-207	200		n.a.	
	oil platform	170 000-300	000	n.a.	20 900-45	200		n.a.	
	Cost/kg removed	Gas platform, small Gas platfo			rm, large		Oil platform		
		Existing [€/kg]	New [€/kg]	Existing [€/kg]	New Exi		sting kg]	New [€/kg]	
	dissolved oil	1 374-5 660	n.a.	116-491	n.a.	106-	-229	n.a.	
	dispersed oil	2 062-8 490		424-1 802		64-	13.8		
	zinc equivalents	39 564-		5 642-		2 986-	-6 457		
		162 928		23 954					
	Remarks:								
	- The technique is only applied of installations.	on existing offs	hore insta	llations, although	n provisions ca	an be n	nade on	new	
	- Including costs of removal and installation is combined with the second secon	costs of removal and replacement of production lines with drilling rig (gas). On oil installations, the							
	calculated. Lower costs are for	use of a platfo	rm rig. Po	ssible costs for le	oggings shoul	d be ca	lculated	•	
	- The KEw is difficult to assess, should be raised with risk.	since the costs	vary and	production may	reduce. KEw 1	may be	calcula	ted but	
	- The costs model situation is presented for one well and a reduction of 62,5% of formation water. In case that the amount of formation is 75% or 50% of the total water production, the reductions are 62,5% x 75% x 0,2 m ³ /h and 62,5% x 50% x 1,4 m ³ /h respectively. Oil platforms also require extra costs for reducing 1/5 of the water production by 50% (for one well 50% of 30 m ³ /h). A total of 5 wells is required for similar reservoir and production.								
	- Costs for horizontal wells are u	isually higher.		1 1			•1	1	
Cross media	- Possible slight savings in energ	Less ener	ot calcula	nption will reduc	e air emissior	ional of is, espe	cially w	hen diesel	
effects		fuel is use	ed.						
	Energy	Reduced	Reduced energy consumption for water pumps etc.						
	Added chemicals	Reduced corrosion	Reduced use of chemicals for water treatment e.g. scale inhibitors, corrosion inhibitors, demulsifier.						
	Waste	Less (ofte water pro	Less (often slight radioactive, NORM) sludge deposition in view of reduced water production.						
Other impacts	Safety	None.							
	Maintenance	Maintena no mainte	nce of wa	ter treatment faci mechanical seal	lities will def needed.	initely	reduce.	In principle	
Practical	General				Offsh	ore			
experience	Mechanical water shut off is app	olied frequently		These technique	es can be appl	ied offs	shore.		
Conclusion	BAT			Emerging Ca	indidate for B	AT			
Literature source	[1]								

Table A - 4: Ch	emical water shut off						
Principle	When water breakthrough occurs with oil or gas production, production zones with high water cuts can be sealed by the placement of special polymers. By adding cross-linkers, gel is formed which blocks water. Chemical sealing is often applied in higher production zones. The advantage in comparison with mechanical shut off is that the full diameter of the well remains available for any well repairs and the chance for flow behind the tubing is less, since the gel perforates the formation deeply. The disadvantage is that the gel normally cannot be removed anymore when production proves less. Sometimes polymers are injected to reduce the relative permeability for water, whereas the permeability for gas remains the same.						
Process diagram							
	pro pro injec	duction zor duction zor duction zor sted gel plu		oil (or gas oil (or gas) water carry (de-watered con nection	s) + wat) + wat ving zou dorfau with w	er er ult in a ter zon e)	
Basic elements	Polymer, cross-linker, cata often placed by a coiled tu process of completion of a amounts of water, e.g. by	alyst, fille bing. In c well take cementing	r. There are many types of anor oil wells, a workover, or product es into account the possibility of g tubings.	ganic and bi tion lines ma f sealing zon	io-pol ay be nes wł	ymers. In gas wel appropriate. Prefe iich may produce	lls, the gel is erably, the large
Suitable for the	Heavy metals	R [%]	Production chemicals	R [%]	Oil		R [%]
removal of:	Cadmium	50-75	Methanol	<55	■ Di	ssolved oil	50
D	■ Zinc	50-75	Glycols	<55	B 1	TEX	50
R = removal	■ Lead	50-75	Corrosion inhibitors	50-75	Be	nzene	50
enterency	Mercury	50-75	Anti-scale solutions	50-75	PA	Hs	50
	Nickel	50-75	Demulsifiers	50-75	Dispe	rsed oil	R [%]
					Oi	1	50
	<i>Remarks:</i> The effectiveness of sealir oil or gas and water. Redu oil/water emulsions, in son concentrations. Lower salt Formation water will inev	ng is depe ction of c ne cases l concentr itably be	ndent on successful placement of hemicals is less than proportion leading to increased use of demi ations will lead to increased use produced in view of natural wat	of the gel an late. Lower s ulsifiers and e of methanc er saturatior	nd of t salt co l highe ol/glyc n (con	he physical intera oncentrations lead er dispersed/disso col (hydrate inhib ate water).	ction between to more lved oil itors).
Technical details	Type of installation			Gas 1		Gas 2	Oil 1
	Produced water volume (d	esign)		$1 \text{ m}^{3}/\text{h}$	1	6 m ³ /h	175 m ³ /h
	Area required for water tre	eatment ir	nstallation	less		less	less
a	Mass of equipment for wa	ter treatm	ent installation	lower	<u> </u>	lower	lower
Critical operational parameters	Study is required to identify maximum allowable temp for multi-layer reservoirs (horizontal wells. For the se	ty the sou erature is (water sho ealing of	rce of water production and red 150 °C (dependent on type of g ould not be able to flow around fractures, large amounts of activ	uce the risk gel). Chemic the blockade vated gel are	al wat cal wat e) but e need	the production of the producti	tion. The nly applicable blied in el and filler.
Operational reliability	The reliability of chemical communication between z permeability is that they n	plugging ones, the eed not to	g is modest, absolute certainty al rate of success is 30-70%. Adva be injected in a specific zone,	bout closing antage of po which increa	g-in w olymer ases tł	ater is rare. Depen rs that reduce rela ne reliability of se	ndent on the tive aling.
Indication of costs							

	Costs	Investme	nt costs ([€]	CAPEX)	Explo	itation co	sts (O arl	PEX)
		nresent		new	present		ոյ	new
	gas platform, small	170 000-480 00	00	n.a.	42 900-124 700			n.a.
	gas platform, large	170 000-480 000		n.a.	40 900-122	700		n.a.
	oil platform	150 000-520 00	00	n.a.	15 600-113	300) n.a.	
		•						
	Cost/kg removed	Gas platform	ı, small	Gas platfo	rm, large	large Oil platform		tform
		Existing	New	Existing	New	Existi	ng	New
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]
	dissolved oil	1 161-3 374	n.a.	97-291	n.a.	79-57	5	n.a.
	dispersed oil	1 741-5 061		356-1 067		4,7-3	4	
	Zinc equivalents	33 411- 97 118		4 728- 14 185		2 229	6	
	Remarks:							
	- The technique is only applied installations, that may later on KEw, costs are based on 1 000	on existing offsh reduce CAPEX 0-1 500 €/m ³ gel)	ore instal (costs for	lations, although these provision	n provisions c s should not b	an be mae e added v	de on when	new calculating
	 CAPEX includes coiled tubing (gas). On oil installations, polymer injection is combined with the replacement of pumps (ESP); therefore only additional costs should be calculated. A platform rig requires lower costs than a jack-up rig and sealing of fractures (high volume needed). Possible costs for loggings should be calculated. The KEW is difficult to assess since the costs vary and production may reduce. KEW may be calculated but 						blacement costs than a ulated. ated but	
	 should be raised with risk. Costs for model situation platt forms 75% or 50%, the reduct oil installation also costs for 1 5 wells needed if reservoir and Costs for easling of fractures costs 	forms are for 1 w tion is 62,5% x 75 well to reduce 1/ d production are s	ell, needo 5% x 0,2 /5 of the similar).	ed to reduce 62,5 m ³ /h and 62,5% water production	5% formation x 50% x 1,4 μ with 50% (5)	water. If m ³ /h resp 0% of 30	forma ective m ³ /h)	tion water ely, for an) (a total of
	- Possible slight savings in ener	gy costs were not	t calculat	ed, neither was i	ossible additi	ional oil d	or gas	production.
Cross media effects	Air	Less energ fuel is used	y consun 1.	nption will reduc	e air emissior	ıs, especi	ally w	hen diesel
	Energy	Reduced en	Reduced energy consumption for water pumps etc.					
	Added chemicals	Reduced u corrosion i	se of che nhibitors	micals for water , demulsifier.	treatment e.g	. scale inl	hibito	rs,
	Waste	Less (often water prod	n slight ra luction.	dioactive, NOR	M) sludge dep	position ii	n view	v of reduced
Other impacts	Safety	None.						
	Maintenance	Maintenan no mainten	ce of wat	er treatment faci chemical seal ne	ilities will def eded.	initely red	duce.	In principle
Practical	Genera	l			Offsh	ore		
experience	Chemical water shut off is appli	ied frequently.		These technique	es can be appl	ied offsh	ore.	
Conclusion	BAT			Emerging Ca	andidate for B	AT		
Literature source	[1]							

Table A - 5: Sta	inless steel tubing, flov	w lines,	pipelines				
Principle	In the presence of free water during the transport of oil and gas where H_2S and/of CO_2 are present, corrosion could occur where carbon steel is used. Depending on the degree of corrosion (depending on the temperature, the CO_2 level, the pressure of the medium and the planned life span) a combination can be used of control measures such as the development of corrosion margins, the use of corrosion inhibitors or the use of corrosion resistant material. The use of corrosion inhibitors in combination with a high pressure step can lead to formation of stable oil-water emulsions with a small particle size that are difficult to separate. The use of corrosion resistant material, possibly in combination with high pressure separation, requires little or no use of corrosion inhibitors, which leads to a decrease of aromatic hydrocarbons in overboard water. For low pressure lines, synthetic materials (GRE/GRP) may be used, but for high pressure lines and pipelines duplex steel (>18% Cr / 5% Ni) or (Inconel) coating is used. Stainless steel vessels may be used or vessels may be						
	coated with a protective co	oating.					
Basic elements							
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Cadmium Lead Mercury Nickel	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] 100 50-100	Oil Dissol BTEX Benze PAHs Dispersed	ved oil ne d oil	R [%] * * * R [%]
	Remarks: *: The removal efficiency systems installed and whe removal efficiency may re	for dissol ther high duce cons	ved and dispersed oil depen pressure oil water separation siderably.	nds, amongst o n is applied. If	■ Oil thers, on pr demulsifie	roduced water tr er is in injected,	* eatment the specific
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	lesign)	Gas 1 1 m ³ /h n.a. n.a.	Gas 2 6 m ³ /h n.a. n.a.	1	Oil 175 m n.a. n.a.	l ³ /h
Critical operational parameters	Operations and control of injected. Corrosion increas be reduced considerably w (possibly separated system	the oil co ses expon /hen the v ns).	ntent in produced water are entially with raising temper- vater treatment facilities are	enhanced whe ature. The nee operated in a	n less corre d for use of way so as t	osion inhibitors f corrosion inhil o prevent oxyge	are pitors may n entering
Operational reliability	The resistance of stainless	steel aga	inst corrosion and erosion is	s better and the	erefore the	life span is long	er.

Indication of costs	The use of materials that are resistan maintenance. For a gas pipeline with life span of 15 years, this totals \in 510 investments of \in 40 000 is achieved. pipelines amounts approximately to even point for such a pipeline would would not be justifiable. When produ account, or when the gas is very corr Since duplex steel is more resistant a In some cases the use of smaller dian	It against corrosion leads to savings in the use of corrosion inhibitors and a capacity of 1,5 MM Nm ³ /d, these savings total \notin 34 000 per year. With a 0 000. If no corrosion inhibitor injection system is needed, a further saving of . Additional investments for stainless steel in comparison with carbon steel \notin 375 per meter (for 10" and 12" \notin 500/m and \notin 750 respectively). The break l be 1,5 km. Since this is much shorter than most pipelines, this investment luction is higher and when other business economic factors are taken into rosive, the use of stainless steel may be preferred. against erosion, smaller diameters can often be applied, thus reducing costs. meter pipelines renders cementing pipelines unnecessary.			
Cross media	Air	None.			
CHECUS	Energy	None.			
	Added chemicals	Reduction of corrosion inhibitors, for gas 10 l/MM Nm ³ and water approximately 100 mg/l.			
	Waste	None.			
Other impacts	Safety	Safer, since less dru (satellite platforms) problems.	ams with corrosion inhibitors need to be handled and because of reduced leakage and corrosion		
	Maintenance				
Practical	General		Offshore		
experience			Corrosion resistant materials are frequently applied for (pipe)lines and vessels.		
Conclusion	BAT		Emerging Candidate for BAT		
Literature source	[1]				

	ulation of pipe lines							
Principle	When gas is transported un a danger of hydrate forma pipeline. There are three d	When gas is transported under high pressure from a satellite to a treatment facility on a central installation, there is a danger of hydrate formation as the mixture of gas and water cools down. This may lead to blockages in the pipeline. There are three different methods available to prevent this problem:						
	1. Injection of methanol or glycol (MEG/TEG), or other chemicals that may, or may not be retrieved and regenerated on the central platform;							
	2. Maintaining the temp	erature as	much as possible by burying	and possibl	y adding insul	ation to the p	ipeline;	
	 Lowering the pipelin possible when suffici desired since this redu 	ne pressur ient comp uces the p	re, in order to allow for ope pression facilities are installed ipeline capacity considerably a	eration outs d on the ce and energy	ide the hydra ntral platform is wasted.	te-regime. Tl , but usually	nis may be this is not	
	The only alternative for a effective when production	The only alternative for continuous injection of chemicals is therefore insulation of the pipeline. This is only infective when production is continuous and a minimum production is maintained. During start up and when						
	producing below the requ hydrates.	ired mini	mum, methanol will need to	be injected	l in order to p	prevent the fo	ormation of	
Process diagram	Not applicable							
_								
								
Basic elements	Insulated and/or buried pip	pelines.			1			
Suitable for the	Heavy metals	R [%]	Production chemicals	R [%]	Oil		R [%]	
removal of:			Methanol	>90	Dissolved	oil	*	
			Chronela	100			*	
R = removal							*	
R = removal efficiency	Lead		Corrosion inhibitors		\square Benzene \square PAHs		* * *	
R = removal efficiency	☐ Lead □ Mercury □ Nickel		 Grycois Corrosion inhibitors Anti-scale solutions Demulsifiers 		☐ Benzene ☐ PAHs Dispersed of	1	* * * R [%]	
R = removal efficiency	□ Lead □ Mercury □ Nickel		 Corrosion inhibitors Anti-scale solutions Demulsifiers 		Benzene PAHs Dispersed of	1	* * R [%]	
R = removal efficiency	□ Lead □ Mercury □ Nickel		 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers 		 Benzene PAHs Dispersed of Oil 	1	* * * R [%]	
R = removal efficiency	Lead Lead Nercury Nickel Remarks:		 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers 		□ Benzene □ PAHs Dispersed of □ Oil	1	* * R [%]	
R = removal efficiency	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discl 	l producti harged wi	 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers On below the required minimu th produced water. 	m, injection	□ Benzene □ PAHs Dispersed of □ Oil	unts of metha	* * R [%]	
R = removal efficiency	Lead Lead Mercury Nickel Remarks: For start up operations and required. This will be discl	l producti harged wi	 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers on below the required minimuth produced water. 	m, injectior	□ Benzene □ PAHs Dispersed of □ Oil	l unts of metha	* * * R [%]	
R = removal efficiency	Lead Mercury Nickel <i>Remarks:</i> For start up operations and required. This will be discled. *: When glycol is used, the form the producer of the second s	l producti harged wi e insulatio	 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimuth produced water. on renders re-feeding of water 	m, injection	□ Benzene □ PAHs Dispersed of □ Oil n of small amo	unts of metha	* * R[%] nol is arbons	
R = removal efficiency	Lead Lead Mercury Nickel Remarks: For start up operations and required. This will be discl *: When glycol is used, the from the condensor of the p	l producti harged wi e insulatio regenerat	 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. 	m, injection with a high	□ Benzene □ PAHs Dispersed of □ Oil n of small amo	unts of metha	* * * R[%] mol is arbons	
R = removal efficiency Technical details	Lead Lead Mercury Nickel <i>Remarks:</i> For start up operations and required. This will be discl *: When glycol is used, the from the condensor of the Platform Produced water volume (d)	l producti harged wi e insulatio regenerat	 Orycols Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 1 m³/h 	m, injection with a high	□ Benzene □ PAHs Dispersed of □ Oil n of small amo content of arc as 2 m ³ /h	unts of metha	* * R [%] nol is arbons il	
R = removal efficiency Technical details	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discled with the discled state of the second state o	l producti harged wi e insulatio regenerat esign)	 Orycois Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 I m³/h 3-10 km 	m, injection with a high G: 6 1 3-1	□ Benzene □ PAHs Dispersed of □ Oil n of small amo content of arc as 2 n ³ /h 5 km	unts of metha matic hydroc O n.	* * * R [%] nol is arbons il a.	
R = removal efficiency Technical details	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discleted with the discleted state of the second sta	l producti harged wi e insulatio regenerat esign)	 Grycois Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 I m³/h 3-10 km 8"-10" 	m, injection with a high Gr 6 1 3-1 14"	□ Benzene □ PAHs Dispersed of □ Oil n of small amo content of arc as 2 m ³ /h 5 km - 16"	unts of metha matic hydroc O n.	* * * R[%] mol is arbons il a.	
R = removal efficiency Technical details Critical	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discled *: When glycol is used, the from the condensor of the second start of the s	l producti harged wi e insulatio regenerat esign) may occu	 Grycois Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 I m³/h 3-10 km 8"-10" ar at a pressure/temperature reliation 	m, injection with a high Ga 6 n 3-1 14"	□ Benzene □ PAHs Dispersed of □ Oil □ Oil n of small amo content of arc as 2 m ³ /h 5 km - 16" proximately 25	unts of metha matic hydroc O n. 5 bar/4 °C or	* * * R [%] nol is arbons il a.	
R = removal efficiency Technical details Critical operational personatese	 □ Lead □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discleted with the second start of the second start	l producti harged wi e insulatio regenerat esign) may occu duced wat	 Grycois Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 I m³/h 3-10 km 8"-10" Irr at a pressure/temperature reler will reduce the formation of line at a certain temperature. 	m, injection with a high Gi 6 r 3-1 14" lation of app f hydrates. <i>J</i>	□ Benzene □ PAHs Dispersed of □ Oil □ Oil n of small amo content of arc as 2 n ³ /h 5 km - 16" proximately 25 A minimum pr	unts of metha matic hydroc O n. 5 bar/4 °C or oduction need	* * * * R [%] mol is arbons il a. ds to be tracerscire	
R = removal efficiency Technical details Critical operational parameters	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discleted with the condensor of the second second	l producti harged wi e insulatio regenerat esign) may occu duced wat p the pipe on will be	 Grycois Corrosion inhibitors Anti-scale solutions Demulsifiers Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 1 m³/h 3-10 km 8"-10" ar at a pressure/temperature reler will reduce the formation or line at a certain temperature. V reduced. 	m, injection with a high G: 3-1 14" lation of apj f hydrates With the age	□ Benzene □ PAHs Dispersed of □ Oil n of small amo content of arc as 2 n ³ /h 5 km - 16" proximately 25 A minimum pr eing of the fiel	unts of metha matic hydroc O n. 5 bar/4 °C or oduction need and reduced	* * * R [%] nol is arbons il a. ds to be t reservoir	
R = removal efficiency Technical details Critical operational parameters Operational	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discleted with the condensor of the second second	l producti harged wi e insulatio regenerat esign) may occu duced wat p the pipe on will be	 Grycois □ Corrosion inhibitors □ Anti-scale solutions □ Demulsifiers □ Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. Gas 1 1 m³/h 3-10 km 8"-10" ar at a pressure/temperature reler will reduce the formation or oline at a certain temperature. V reduced. 	m, injection with a high Gr 6 n 3-1 14" lation of ap f hydrates With the age	□ Benzene □ PAHs Dispersed of □ Oil □ Oil n of small amo content of arc as 2 n ³ /h 5 km - 16" proximately 25 A minimum pr eing of the fiel is less effectiv	unts of metha matic hydroc O bar/4 °C or oduction need and reduced we when the t	* * * R[%] R[%] mol is arbons il a. ds to be reservoir hroughput	
R = removal efficiency Technical details Critical operational parameters Operational reliability	 □ Lead □ Mercury □ Nickel <i>Remarks:</i> For start up operations and required. This will be discleted with the condensor of the second second	l producti harged wi e insulatio regenerat esign) may occu duced wat p the pipe on will be still be nee	 Grycois □ Corrosion inhibitors □ Anti-scale solutions □ Demulsifiers □ Demulsifiers on below the required minimu th produced water. on renders re-feeding of water or unnecessary. □ Gas 1 1 m³/h 3-10 km 8"-10" If a a pressure/temperature reler will reduce the formation or or inequired. will reduce the formation or or inequired. will will start up operations 	m, injection with a high Gr 6 n 3-1 14" lation of app f hydrates. A With the age	□ Benzene □ PAHs Dispersed of □ Oil □ Oil n of small amo content of arc as 2 m ³ /h 5 km - 16" proximately 25 A minimum pr eing of the fiel is less effective	unts of metha matic hydroc O bar/4 °C or oduction need and reduced we when the t	* * * R[%] R[%] mol is arbons il a. ds to be d reservoir hroughput	

Indication of costs	The costs of insulation are dependen in-pipe) may double the costs for a p € 230 000/km. A considerable saving is achieved by due to reduced methanol use may va pressure, this percentage is lower un	nt on the required level of insulation. The use of advanced systems (e.g. pipe- pipeline. For gas-condensate lines, additional costs are approximately by the elimination of a methanol recovery unit or glycol regenerator. Savings ary from 5% to 30% of the amount of produced water. With decreasing ntil no injection is needed at a pipeline pressure of 25 bar.				
Cross media	Air	No emissions due to regeneration of methanol or glycol.				
enects	Energy	No energy consumption for regeneration of methanol or glycol.				
	Added chemicals	Insulation prevents the continuous injection and regeneration of methanol/glycol. No regeneration loss from methanol/glycol, no loss of methanol to gas and condensate phase or use of other chemicals.				
	Waste	None.				
Other impacts	Safety	No risks due to trar	sfer of large amounts of methanol.			
	Maintenance	No maintenance on	methanol or glycol regeneration systems.			
Practical	General	•	Offshore			
experience	Insulation and burying the pipeline is the oil and gas industry.	s used frequently in	Insulation is also applied offshore.			
Conclusion	BAT		Emerging Candidate for BAT			
Literature source	[1]					

Table A - 7 : Coa	alescing Pump (Coalescer / Separator)
Table A - 7 : Coa Principle	descring Pump (Coalescer / Separator) The Dynamic Centrifugal Coalescer (DCC) uses the principles of centrifugation to enhance the separation of micron-sized phases from a carrier liquid. In particular, the DCC is used to increase the droplet size of oil in produced wate. The difference in density between the fluids is the driving force in this process. The core component of the DCC is a rotating element, as seen in figure 1. The element consists of many thousands of small channels, rotating at high velocity. In these channels, high G-forces drive micron-sized oil droplets to the channel wall, where they coalesce and form an oil film. This film builds up and, at the end of the channel, breaks up into large droplets. These large droplets, together with the rest of the fluids, are now available for separation downstream of the DCC. A novelty of the DCC is that the element is integrated in a multistage centrifugal pump housing, therefore combining fully proven pump technology with state of the art coalescing techniques. A rotating bundle of mm-sized tubes (see below fig 1) inside the centrifugal pump housing enlarges tdroplets of between 2-20 micron to a size sufficiently large to be separated out with conventional techniques such as IGF, DAF, and Hydro Cyclones. See below for a typical droplet size distribution before and after the coalescer. Fig 1: bundle of teffon tubes (core) The coalescing element is build inside the housing of a normal centrifugal pump, making the unit extremely easy to service also in remote locations with scarce technical expertise. Fig 2: droplet size distribution at in and outlet of the coalescing pump The rotating element, the heart of the DCC, consists of an array of axially oriented small tubes, potted in epoxy restin (see also figure 1). The clement has a length and outer diameter of respectively 170 mm and 150 mm for the DCC-15, and 700 mm and 300 mm for the DCC - 30. The ubses of the element are standard 1.4 mm in diameter
	In tubes of the element are standard 1,4 mm in diameter and are made from stainless steel AISI 316. Optional, tubes are made from a special PTFE (Teflon). This proved to be extremely non-stick and is therefore an ideal option when the risk of plugging is present (high solids content). In case of a chemically stabilized emulsion, an add-on is supplied to destabilize the emulsion prior to entering the coalescer (see the process diagram below)
Process diagram	
Basic elements	ELOX (IF REQUIRED) AND COALESCING PUMP

Suitable for the removal of:	✓ Dispersed oil					
	Remarks:					
Technical details	Per Unit Treatment capacity (m3 produced water per hour) Gross Package volume (LxWxH) Operating weight CAPEX (€) OPEX (€/year) Cost per m3 produced water(€/m3)	Minimum 2M ³ /hour 1,5 x 0,4 x 0,4 m 150 Kg 30.000 4.000 0,5	Maximum 150 M3/HOUR 2 ,5 x 0,8 x 0,8 m 1200 Kg 250.000 25.000 0,05			
Critical operational parameters	electrical power	1	1			
Operational reliability, incl. information on downtime	There should be little or no downtime. Onl still flow through it. Plugging is difficult s	y to service the pump (seals and boince the unit uses Teflon internals	earing) .If the system fails, water will			
	Remarks:					
Cross media	Air	None				
effects	Energy	Requires 0,05 kW/m3				
	Added chemicals	None				
	Waste	None				

Other impacts	Health and safety	None			
	Maintenance interval & availability 95%+ (% per year)				
Practical	General		Onshore / Offshore		
experience					
State of development	Ate of relopment Implemented offshore Velopment Used onshore V Offshore field trials		Practical applicability: PRODUCED WATER, POLYMER FLOODING, ASP		
	✓ Testing		Driving force for implementation : effluent quality of separation train reduces at increasing water cut		
			Example plants:		
Literature source	 J.J.H. BROUWERS. Phase separator. Experimental Thermal and Flu G.P. WILLEMS, M. GOLOME AIChE Journal (2010): Chemical Engined http://www.otcnet.org/2011/pag 	aration in centrifugal ids Science 26 (2002) 8OK et al. Condensed ering Research and D ges/general/awards.ph	al fields with emphasis on the rotational particle)2) 325-334. red rotational separation of CO2 from natural gas. Development, 56(1), 150-159.		

Suitable for		Removal Efficiency		Reference to source documentation
		(Typical %)		
Oil	Gas	Oil	Gas	
installations	installations	installations	installations	

Hydrocarbons			
- Dispersed oil	↓	50-90%	Removal efficiency of last separator increased with 50-90%
- Dissolved			
oil			
Specific oil			
components:			
- BTEX			
- NPD			
- PAH's 16			
EPA			
- Others			
(indicate)			
Heavy metals			
Offshore chemicals			
- methanol			
- glycol			
- corrosion			
inhibitors			
- biocides			
- scale inhibitors			
- surfactants			
- others			

Table B - 1: Ov	erhead vapour combust	ion (OV	VC)					
Principle	Application of OVC elimi glycol regeneration unit. C under controlled conditions	Application of OVC eliminates the most important source of BTEX in produced water, i.e. condensate from the glycol regeneration unit. OVC does not condense the vapours from regeneration but these vapours are incinerated under controlled conditions in the burner of the glycol regenerator.						
Process diagram	glycol 🗲	glyc		strip gas	exce gas overhead vapour high BTEX-conte	ss 's ent		
Basic elements	Special burner (suitable for	r wet gas)	with 'fire way' and higher	stack.				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] > 99% * **	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil R [%] >99 >99 >99 >99 >99 R [%] >99**		
	Remarks: Almost all hydrocarbons, in *: When used. **: The hydrophobic part is	ncluding s	strip gas, are burned. I.		L			
Technical details	Platform Produced water volume (de Partial flow (design) Required area (extra) (LxW Mass (extra)	esign) VxH)	Gas 1 (small) 1 m ³ /h 0,05 m ³ /h negligible negligible	Gas 2 (large) 6 m ³ /h 0,1 m ³ /h negligible negligible		Oil 1 n.a.		
Critical operational parameters	The design should take due higher stack and temperatu existing platform. A shut d shut down for other reasons	e account re regulat own peric s as well.	of possible methanol injecti ion with air are the most im od of 1-2 weeks is required.	ion. Installation portant feature: This renders hi	of a new 'fire's when OVC is gh costs unless	way' / burner, a installed on an the installation is		
Operational reliability	As reliable as regular regen fluctuations, but may be af	neration sy fected if g	ystems. The functioning of t gas contains glycol due to m	OVC is not affe	ected very much of regeneration.	n by gas quality		

Indication of costs											
	Costs	Investi	ment costs	(C.	APEX)	Explo	Exploitation costs (OPEX)				
				[€]			[€ / year]				
			present			new	present	new		new	
	gas platform, small		308 000	000		20 000	87 300		3 300		
	gas platform, large		381 000)		0	108 600	00		0	
	oil platform		n.a.			n.a.	n.a.			n.a.	
						T					
	Cost/kg removed	Ga	ıs platfo	orm, small	ll Gas platfor		rm, large	Oil platforr		tform	
		Exis	sting	New		Existing	New	Exis	sting	New	
		[€/I	kg]	[€/kg]		[€/kg]	[€/kg]	[€/	kg]	[€/kg]	
	benzene	53	32	20		94	0	n	.a.	n.a.	
	aliphatic hydrocarbons										
	zinc equivalents D superlay										
	<i>Kemurks:</i> For smaller new installations (< 3 MM m^3 /day) the CAPEX is approximately equal. For larger installations, the										
	costs are lower since less equipment is needed (no condensor, gas scrubber, pump, instrumentation). Retrofitt								Retrofitting		
	on an existing installation amou	unts app	proxima	ately to $\notin 2$	200	000 (materials).		,	U	
Cross media effects	Air	2	Substantive reduction of air emissions. Other gases may also be used when OVC is installed (flash gas etc.) instead of them being vented. When a relative large amount of strin gas is peeded use of other gases is limited								
		l	NO_x emissions are less than 150 mg/m ³ .								
	Energy	Ι	Lower energy consumption in view of use of other gases.								
	Added chemicals	1	None.								
	Waste	1	None.								
Other impacts	Safety	1	None.								
	Health	1	No air e	mission of	hy	drocarbons.					
Practical	Genera	ıl			Offshore						
experience	More than 15 years of experience industrial wastewater treatment	ce with	with OVC onshore		OVC is applied offshore in new installations since 2000.					s since	
Conclusion	BAT				Emerging Candidate for BAT						
Literature source	[1]										

Table B - 2: Fluid from condensor to production separator										
Principle	Condensation of overhead vapours from the glycol regenerator produces a watery stream with a high concentration of dissolved oil. This relatively small stream is brought into contact, under high pressure, with a large amount of production water, gas and condensate in the production separator. The condensate and gas will extract a large part of aromatic hydrocarbons (dissolved oil), thus reducing discharge of aromatic hydrocarbons (dissolved oil). The glycol regeneration water is most effectively injected before the slug catcher or gas cooler, but may also be pumped to the water-condensate separator.									
Process diagram	gas condensor gas excess gas water + aromatic HC's buffer tank production separator condensate water separator water									
Basic elements	Line elements, buffer tank	, recycle j	pump							
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%] *	Oil Dissolved oil BTEX Benzene PAHs Dispersed oil Oil	R [%] >50 >50 >50 >50 8 [%] *				
	Remarks: The removal efficiency is a the quality of treatment sys *: Partially removed if pres	related to stems. sent.	the partial flow and dependent	t on the cor	nposition of gas and	condensate and				
Technical details	Platform Produced water volume (d Partial flow (design) Required area (LxWxH) Mass (filled)	esign)	Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 0,8 x 0,5 x 1 m 0,3 tonnes	Gas 2 (large) $6 \text{ m}^3/\text{h}$ $0,1 \text{ m}^3/\text{h}$ $1 \ge 0,6 \ge 1,5 \text{ m}$ 0.5 toppes		Oil 1 n.a.				
Critical operational parameters	The advantages of this tech temperature and may best	nnique de be evalua	pend on the composition of ga ted by using a process simulation	s and conde ion.	ensate, the separator	pressure and				
Operational reliability	High.									

Indication of												
costs												
	Costs		Inves		(CAPEX)	Explo	tation costs (OPEX)					
				[€]			[€ / year]	new 22 840 26 854				
			preser		new	presen						
	gas platform, small		158 42	.3	102 433	42 773						
	gas platform		13910	»/	117 000	49 094						
			II.a.		II.a.	II.a.		II.a.				
	Cost/kg removed	(Gas platf	form, small	Gas platfo	orm, large	Oil pla	tform				
		Ex	isting	New	Existing	New	Existing	New				
		[€	E/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]				
	dissolved oil	4	520	278	86	47	n.a.	n.a.				
	dispersed oil		-	-	-	-						
	zinc equivalents		-	-	-	-						
Cross media	Air		Little influence.									
cheets	Energy	For HP re-circulation										
	Added chemicals	Added chemicals			None.							
	Waste		None.									
Other impacts	Safety		None.									
	Maintenance		Only p	ump mainter	enance.							
Practical	Ger	neral			Offshore							
experience					Is already applied offshore							
Conclusion	BAT	□ Emerging Candidate for BAT										
Literature	[1]											
source												

Table B - 3: Alternative methods of gas drying										
Principle	Usually, gas washers are used for gas drying. The gas is washed in counter-flow with glycol (TEG or DEG). The solubility of aromatic hydrocarbons in glycol is high, causing high concentrations of aromatic hydrocarbons in water in the process regeneration of glycol. Alternative 'washing fluids' which render aromatic hydrocarbons less soluble, reduce the amount of aromatic hydrocarbons being removed. Alternative 'washing fluids' are MEG or methanol via the IFPEX process. These alternative 'washing fluids' will also remove less water, rendering this technique suitable especially in the case of the less stringent requirements with regard to dew point.									
Process diagram	wet gas wet gas water (50-100 ppm MeOH) IF PEX tower									
Basic elements	IFPEX towers (strip tower	s), J-T va	lve (o	r turbo expander), cold sep	parator, fil	lter, water-conden	sate separa	ator, pump		
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] Proc □ M □ G □ C □ A □ D		duction chemicals Iethanol Bycols Corrosion inhibitors .nti-scale solutions Demulsifiers	R [%] 100	Oil Dissolved oil BTEX Benzene PAHs Dispersed oil Oil	I	R [%] 35-85 35-85 35-85 ? R [%]		
	Remarks: Removal efficiencies of the	e IFPEX	proces	ss, using methanol as 'was	hing fluid					
Technical details	Platform Produced water volume (de Partial flow (design) Required area (LxWxH) Mass (filled)	'latform 'roduced water volume (design) 'artial flow (design) Required area (LxWxH) Mass (filled)		Gas 1 (small) 1 m ³ /h 0,05 m ³ /h	Gas 2 (large) 6 m ³ /h 0,1 m ³ /h		Oil n.a	1		
Critical operational parameters	Only applicable when gas and condensate, part of the cooling with J-T valve (or 20 °C, in order to limit me	drying is methano more coo thanol los	not ve l is lo ling c sses. E	ery critical. Relatively high st in the water phase. Suffi apacity is needed). The co nergy may be needed for n	n use of m icient gas oling proc recompres	ethanol in view of pressure is requir cess preferably tak ssion.	f absorptio ed in order kes place b	n in gas to allow elow –		
Operational reliability	Relatively easy operation. regeneration. No foam form	The IFPE ning or b	EX tov reakin	ver may also be installed o g up due to (over-) heating	n satellite g.	platforms. No he	at needed f	ìor		

Indication of costs	In view of the fact that replacement of existing systems is concerned, no detailed cost analysis was performed. Rather a comparison of investment and operational costs with existing systems took place.								
	Table 1: Comparison of investments common systems vs. IFPEX Saving investments IFPEX compared to common systems								
	TEG-system25-30%MEG-system10%								
	Table 2: Comparison of operational costs common systems vs. IFPEX Saving investments IFPEX compared to common systems								
	TEG-system25-30%Glycol injection system20%								
	Remarks: The major advantage of an IFPEX-1 system over more commonly applied systems is that no glycol regenerator is needed. Thus CAPEX and energy consumption are much lower. Moreover, process control is better. An IFPEX-system uses more methanol compared with traditional TEG gas drying systems. There are almost no air emissions. An IFPEX unit, however, does use large amounts of methanol. The IFPEX-1 system can easily be combined with the IFPEX-2 process for the removal of acidic gases (CO ₂ and H ₂ S). Other alternative gas drying systems are: - Twister supersonic separator (see table C-13); and								
Cross media	Air	No emissions of B	TEX and VOS (incl. strip gas)						
effects	Energy	IFPEX requires 80- pressure is sufficient	90% less energy than a glycol system, provided that to allow cooling.						
	Added chemicals	Methanol consumption approximately 275 l/day (small gas platform) and 1 900 l/day (large gas platform).							
	Waste	Methanol (50-100 No glycol consump	ng/l) in (small amount of) water from the IFPEX tower. tion.						
Other impacts	Safety	No glycol chain in	area with potential danger of explosion.						
	Maintenance	Far less maintenan	20.						
Practical	General		Offshore						
experience	Limited experience with alternative gas drying systems Worldwide approximately 10 systems.		No difference with onshore application, except that J-T valve or expander is not economically feasible, since gas needs high pressure for transportation in the pipeline.						
Conclusion	BAT		Emerging Candidate for BAT						
Literature source	[1]								

Table B - 4: Ma	cro porous polymer ex	traction	(MP	PE) (partial flow)							
Principle	On gas platforms, hydrocarbons can be removed from condensed water from the glycol regeneration process using Macro Porous Polymer Extraction (MPPE). Water from the glycol regeneration is directed through a column packed with a bed of MPPE material. An extraction fluid, immobilized in the MPP matrix, extracts hydrocarbons from the water phase. Treated water can be discharged immediately. Prior to reaching the (maximum) required effluent concentration, the feeds are lead through a second column; the first column is regenerated with low-pressure steam. Once the second column is saturated, the feeds are switched back to the first column. After a second cycle, the feeds are redirected to the first column again. A characteristic cycle lasts 1 to 2 hours. Steam and hydrocarbons are condensed, and may easily be separated because of the high concentration of hydrocarbons are lead to the condensate treatment system, the small amount of water is redirected into the installation and treated.										
Process diagram	n / l										
	water water water water water condensor water + HC's (glycol regeneration) water- re cycle HC-water sepa rator										
Basic elements	2 columns filled with MPF	PE materia	al, con	denser, settling tank, stea	am generate	or (electric).					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] ?	Proc ■ N □ G ■ C □ A □ D	duction chemicals Methanol Hycols Corrosion inhibitors nti-scale solutions Demulsifiers	R [%] >99 * **	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] >99 >99 >99 >99 R [%] >99 **			
	Remarks: The removal efficiency of benzene and other dissolved hydrocarbons, including TEX, is very high: reductions of 2 000-3 000 mg/l to < 1 mg/l are possible. The occurrence of the removal of mercury during a test operation could not sufficiently be established. *: if present **: the hydrophobic part is removed										
Technical details	Platform Produced water volume (d Partial flow (design) Required area (LxWxH), i steam generator Mass (filled)	esign) ncluding		Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 1 x 1,5 x 1,7 m 1,5 tonnes	Gas 2 6 0,2 1 x 1 2 t	2 (large) m^{3}/h 1 m^{3}/h ,7 x 2 m onnes	Oil n.a	1 a.			
Critical operational parameters	The MPPE material should generator should be demin	l be repla eralised.	ced in	order to avoid loss of eff	ectiveness	. The feed wate	er for the stea	im			
Operational reliability	The process is not affected (remote control).	l very mu	ch by	fluctuations in flow or B7	TEX-conce	entrations and c	can be fully a	utomated			

Indication of costs										
	Costs	Investment costs (APEX)	Exploitation costs (OPEX)			
		[€]					[€ /		year]	
	1.0	F	presen	t		new	present	t		new
	gas platform, small	3	24 00	0	27	76 000	99 800		59 200 71 200	
	gas platform, large	3	68 00	0	3.	13 000	11/300	J	71 200	
	oil platform		n.a.			n.a.	n.a.			n.a.
		1								
	Cost/kg removed	Gas	s platf	orm, small		Gas platfor	m, large	Oil platform		tform
		Exist	ing	New		Existing	New	Exi	sting	New
		[€/k	g	[€/kg]		[€/kg]	[€/kg]	[€	/kg]	[€/kg]
	Benzene	608	8	361		102	62 50	n	1.a.	n.a.
	BIEA Pomarka	480	0	289		82	50			
	Including costs for replacement	t of MPF	PE ext	traction fluid	1.					
Cross media	Air	R	Required energy will lead to increased air emissions.							
circus	Energy	E p	Electricity for steam generation (6-2,5 kg LP steam per m ³ water) and for pumps (total for 0,008 / 0,005 m ³ /h resp. 4,4 / 13,2 MWh/year).							
	Added chemicals	E v: L	Extraction fluid is consumed very slowly, and is transported with the BTEX via the separator. Possibly chemicals for demineralisation of feed water for LP steam production.							
	Waste	Т	The MPPE bed should be replaced approximately every 2 years.							
Other impacts	Safety	N	lone.							
	Maintenance	R	Relativ	ely little.						
Practical	Genera	վ			Offshore					
experience	Operational experience with MPPE-process in industrial waste water treatment. Successful treatment (partial flow and end flow) of produced water at TFE in Harlingen, the Netherlands.				Successful tests on partial flows.					
Conclusion	BAT				□ Emerging Candidate for BAT					
Literature source	[1] [6]									

Table B - 5: Steam stripping (partial flow)												
Principle	Hydrocarbons can be removed from condensed water from glycol regeneration on gas platforms by means of steam stripping. The water is fed into a packed column and brought into intense contact with steam (known as stripping). This technique is suitable for the removal of dissolved oil (BTEX), but will also remove aliphatic hydrocarbons. Steam and hydrocarbon vapours are condensed and separated easily because of the high hydrocarbon content. Hydrocarbons that have been separated by steam can be directed to the condensate treatment system; water can be discharged.											
Process diagram	excess gas condensor steam stripping column produced water buffer tank produced water oil buffer tank team buffer tank buffer tank											
Basic elements	Buffer tank, feeding pump condensate pump, (electric	, heat excl	hangeı r.	, stripping column, conde	ensor, BTI	EX-accumulate	or, re-circulat	ion pump,				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Prod M(G) C A D D	luction chemicals ethanol lycols orrosion inhibitors nti-scale solutions emulsifiers	R [%] 10-90* **	Oil Dissolved BTEX Benzene PAHs Dispersed oil	oil	R [%] >99 >99 >99 >99 R [%] >97*				
	<i>Remarks:</i> The removal efficiency for from 40 mg/l to < 1,5 mg/l *: When present. **: The hydrophobic part i	BTEX is is partly re	very l	nigh: reductions from 500 d.	-4 000 mg	g/l to < 1 mg/l,	aliphatic hyd	rocarbons				
Technical details	Platform Produced water volume (de Partial flow (design) Required area (LxWxH) (i generator) Mass (filled)	form form fuced water volume (design) ial flow (design) uired area (LxWxH) (incl. steam erator) (filled)		Gas 1 (small) 1 m ³ /h 0,05 m ³ /h 3 x 2 x 3 m 8 tonnes	Gas 2 6 0,1 4 x 2	Gas 2 (large) $6 \text{ m}^3/\text{h}$ $0,1 \text{ m}^3/\text{h}$ 4 x 3 x 4 m		1				
Critical operational parameters	In order to guarantee a con oil, avoiding disturbance o in order to maintain the ter for equal levels in boiler an	stant flow f the proc nperature nd columr	v, a bu ess in at the n (and	ffer tank needs to be insta the column. When the flo top of the column. The st above the bundle of the b	lled. This w is very eam line r oiler).	buffer tank als low, it may be nust be large e	o allows for a necessary to nough in orde	skimming add water er to allow				
Operational reliability	The technique is reliable a	nd is cons	idered	a proven technique for th	ne treatme	nt of glycol reg	generation wa	iter.				
Indication of costs												
------------------------	--	---	----------------	---------------------	----------------	-----------------	-----------------	--	--	--	--	--
	Costs	Inves	stment costs ((CAPEX)	Explo	itation costs (OPEX)					
			[€]		[€ / year]							
		preser	nt	new present		t	new					
	gas platform, small	170 00	00	135 000	57 900)	35 100					
	gas platform, large	265 000 2		210 000	90 700)	55 000					
	oil platform	n.a.		n.a.	n.a.		n.a.					
		1										
	Cost/kg removed	Gas plat	form, small	Gas platfo	rm, large	Oil pl	Oil platform					
		Existing	Existing New		New	Existing	New					
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]					
	benzene	354	214	79	48	n.a.	n.a.					
	BTEX	283	171	63	38							
	<i>Remarks:</i> Energy consumption is relativel be reduced considerably when I	vely high, despite the fact that part of the heat is recovered. Energy consumption heat of the exhaust gases from turbines is used.										
Cross media effects	Air	Requir remain	ed energy w	ill increase air en	nissions. Afte	er the condens	or little gases					
	Energy	Approximately 40 kWh/m ³ regeneration water (mainly for boiler).										
	Added chemicals	None.										
	Waste	None.										
Other impacts	Safety	No sig	nificant influ	ience.								
	Maintenance	Relativ	vely little.									
Practical	Genera	ıl			Offsh	nore						
experience												
Conclusion	BAT			Emerging Ca	indidate for E	BAT						
Literature source	[1]											

Table B - 6: Hig	h pressure water conde	ensate se	epara	ntor					
Principle	On gas platforms the dispersed and dissolved oil content in produced water can be reduced by a high pressure (HP) water condensate separator, which operates at approximately the same pressure as the primary production separator. With this, exposure of the water-condensate mixture to a high pressure drop, resulting in the formation of emulsions, is prevented. The formation of small condensate droplets in water (emulsion) in the level regulating valve is prevented by separating the mixture and by releasing pressure in separate valves. With this, acceptable oil concentrations are achievable using relatively simple add-on treatment equipment. The technique may also be used for condensate-water mixtures from the gas filter / separator and high pressure scrubbers.								
Process diagram	condensate/ water water water								
Basic elements	High pressure water-conde	ensate sep	arator	,					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Proc □ M □ G □ C □ A ■ D	duction chemicals Iethanol dycols orrosion inhibitors nti-scale solutions Demulsifiers	R [%] 50-100	Oil Dissolved BTEX Benzene PAHs Dispersed oil	oil	R [%] >30 >30 >30 >30 >30 R [%]	
	Remarks:					- 011		20	
Technical details	Platform Produced water volume (de Required area (extra) (LxW Mass (extra) (filled)	esign) VxH)		Gas 1 (small) 1 m ³ /h negligible 1,5 tonnes	Gas 2 6 neg 4 t	2 (large) m ³ /h digible onnes	Oil n.a	1 a.	
Critical operational parameters	The technique is process ir applicable on new offshore emulsion formation. When scrubbers, may also form s	ntegrated a e installati i using pis stable emu	and sh ions. T ston co ilsions	hould be evaluated durin The use of corrosion inhi compressors, the lubricant s. The use of HP separation	g the develo bitors shoul t-condensate ion of these	opment phase as d be minimised e mixture, whic flows may be	nd is therefo d, since these ch is recover very effective	re mainly e cause ed in e.	
Operational reliability	High								

Indication of costs										
	Costs	Inves	tment costs	(CAPEX)	Explo	itation costs	(OPEX)			
			[€]			[€ / year]				
		preser	nt	new	present	t	new			
	gas platform, small	n.a.		36 000	n.a.		2 800			
	gas platform, large	n.a.		86 000	n.a.		3 400			
	oil platform	n.a.		n.a.	n.a.		n.a.			
	Cost/kg removed	Gas plat	form, small	Gas platfo	rm, large	Oil p	latform			
		Existing	New	Existing	New	Existing	New			
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]			
	dissolved oil	n.a.	93	n.a.	5	n.a.	n.a.			
	dispersed oil		76		4					
	zinc equivalents		226		39					
	Remarks:									
	In the above costs, only elevated	ated costs in comparison with an LP installation was calculated. In view of the fac								
	smaller pumps can usually be in	installed, resulting in lower investments. Costs for existing offshore installation								
	are not relevant, since the install	ation would	have to be s	hut down too lon	g in order to	allow for repl	acement of			
	the water-condensate separator,	and since co	sts for inves	tments are relativ	ely high.					
Cross media effects	Air	Fewer	emissions b	ecause of lower e	nergy consur	nption.				
circus	Energy	Saves	energy in co	ondensate injection pumps as long as pressure in the						
		production separator is higher than in the pipeline.								
	Added chemicals	Less d	emulsifier.							
	Waste	None.								
Other impacts	Safety	None.								
	Maintenance	None.								
Practical	General				Offsh	ore				
experience				Is applied frequ	ently offshor	e.				
Conclusion	BAT	BAT Emerging Candidate for BAT								
Literature	[1]									
source										

Table B - 7: Methanol recovery unit									
Principle	Methanol is injected on gas platforms in order to prevent hydrates. It may be recovered from produced water by means of a methanol recovery unit. The methanol-water mixture is heated up to 99 °C, then the methanol is vaporised in a distillation column. The temperature in the top of the column is maintained at approximately 75 °C by the methanol reflux. This is to prevent too much evaporation of water. After condensation, the methanol is fed back to the methanol storage tank. The methanol content of produced water, which usually does not exceed 30%, is reduced to less than 2%.								
Process diagram	acamulator water + methanol (< 30%) buffer tank acamulator ac								
Basic elements	Buffer cask, heat exchange inhibitor injection.	er, methano	l boiler, distillation column, c	ondensor,	accumulator,	transport pum	ps, scale		
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Margury	R [%]]	Production chemicals Methanol Glycols Corrosion inhibitors	R [%] 20-90*	Oil Dissolved BTEX Benzene DAHe	oil	R [%]		
	□ Nickel	ſ	☐ Antr-scale solutions ☐ Demulsifiers		Dispersed oi	11	R [%]		
	<i>Remarks:</i> Removal efficiency dependence	dent on (flu	ctuations in) water throughpu	t and meth	anol content.				
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)	Gas 1 (small) 1 m ³ /h 5 x 4 x 3 m 8 tonnes	Gas 2 6 6 x 17	2 (large) m ³ /h 5 x 4 m tonnes	O n (MeOH inje rarely applie production.)	il 1 .a. ction is cd in oil		
Critical operational parameters	The distillation process is very much affected by to fluctuations in throughput, which affects the quality of methanol reduction. If produced water contains salts, these may be deposited in the heat exchanger and especially in the methanol boiler. In order to prevent concentration of salts in the boiler, it is recommended to establish a small throughput from the boiler to the column by means of a re-circulation line. Relatively high energy consumption unless combined with heat recovery.								
Operational reliability	Since methanol is often in lower removal efficiency a which leads to frequent sh	jected on sa and low met ut downs fo	tellite platforms, the water pro- hanol quality. Salt in produce r maintenance.	oduction is ed water le	s usually irregunder in the second structure s	ular, which re s in the metha	sults in nol boiler,		

Indication of										
costs			T		0			••		
	Costs		Inves	tment costs ([€]	(CA	APEX)	[€ / year]		DPEX)	
			preser	it		new	present	t	jeurj	New
	gas platform, small		905 00	0	7	752 000	291 50	0	1	71 600
	gas platform, large	1 755 000 1 5		1 546 000 602		602 00	0	3	65 900	
	oil platform		n.a.			n.a.	n.a.			n.a.
		1								
	Cost/kg removed	G	as plati	orm, small	Gas platfor	m, large		Oil pla	tform	
		Exi	Existing New			Existing	New	Exi	sting	New
		[€/	/kg]	[€/kg]		[€/kg]	[€/kg]	[€,	/kg]	[€/kg]
	methanol	2	22	4,3		6,5	1,2	n	ı.a.	n.a.
	Remarks:									
	Methanol savings are dependent	t on m	hethano	l content in v	wat	ter and are base	ed on a maxi	mum c	ontent o	f 10-30%,
Cross media	Energy required for heating of produced water for pumps and cooling wi								cooling will	
effects	Air		increas	e air emissio	ons	s, especially wh	en diesel fue	el is use	ed.	, will
	Energy		Energy	for heating,	, pı	umps and cooli	ng.			
	Added chemicals		Scale i (depen	nhibitors (to dent on corr	pr osi	revent salt depo ivity of water a	sition) and c nd materials	orrosic used).	on inhibi	tor
	Waste		In the probab	buffer cask s ly deposit, w	luc vhi	dge will deposi ich will need to	t. In the heat be removed	exchar using a	nger scal acids.	le will
Other impacts	Safety		No sig	nificant influ	ien	nce.				
	Maintenance		Mainte of form	enance on bo nation of NC	ile RN	er and heat exch M complicated	angers may procedures a	be con and hig	siderable her cost	e, in the case s arise.
Practical	General	1					Offsh	ore		
experience	Recovery of methanol is applied in a number of onshore and offshore gas production operations. N problems in the operation of systems were encount				O oi w ea	Offshore, the sit onshore operation vater throughput asier to install 1	uation is not on, except tha t are usually arger buffer	much at the fl less. V casks.	different luctuatic Vhen nee	from ons in the eded, it is
Conclusion	□ BAT					Emerging Ca	ndidate for E	BAT		
Literature source	[1]									

Table B - 8: Lat	oyrinth type choke valv	re								
Principle	With labyrinth type choke chokes. The gas speed in would then be less likely t originally developed to res On oil producing installa maximising oil droplet size	With labyrinth type choke valves, gas is depressurised through friction instead of smothering as in conventional chokes. The gas speed in the choke is lower (subsonic instead of sonic). It is expected that hydrocarbon particles would then be less likely to be broken up. This advances the previous oil-water separation. This type of valve was originally developed to restrict the sound produced by chokes. On oil producing installations, labyrinth type choke valves may be used as means to minimising shear and maximising oil droplet size, rendering subsequent separation steps more efficient.								
Process diagram	Raw gas Gas Well Well Laby	- water/cond separation	ensate	Hydrate inhibition and dehydration Water - condensate separation	Gas	ying Produced water				
Basic elements	Choke valve of the labyrin	th								
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Produ	action chemicals thanol ycols rrosion inhibitors ti-scale solutions mulcifiers	R [%]	Oil Dissolved o BTEX Benzene PAHs	11	R [%]		
				muismers		Dispersed oil ■ Oil		R [%]		
	<i>Remarks:</i> This technique added to th subsequent technique, ther components. There is no in	e oil-wate e may be formation	er separa a yield n availa	ation process leads to im improvement. There is r ble regarding an improv	nproved se no influence rement in y	paration. Depend ce on the remova /ield.	ling on the l of dissolv	red		
Technical details	PlatformGas 1 (small)Gas 2 (large)Oil 1Produced water volume (design)1 m³/h6 m³/h175 m³/hRequired area (LxWxH)negligiblenegligiblenegligibleMass (extra)negligiblenegligiblenegligible									
Critical operational parameters	Control of the gas speed th	rough the	e valve.							
Operational reliability	Uncomplicated to apply. N	lo workin	g parts.	Choke is a standard par	t of platfo	rm installation.				

Indication of costs											
	Costs	Inve	stment costs [€]	(CAPEX)	Exp	oloitation costs [€ / year]	(OPEX)				
		prese	ent	new	prese	ent	new				
	gas platform, small gas platform, large oil platform		No suffic	ient data availab	ble for an eco	onomic analysis	5				
	Cost/kg removed	Gas platfo	rm, small	Gas platform	n, large	Oil platform	n				
		Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]	Existing [€/kg]	New [€/kg]				
	dissolved oil dispersed oil zinc equivalents	No data available on model situation									
	Remarks:										
Cross media effects	Air	None									
	Energy	None									
	Added chemicals	None.									
	Waste	None									
Other impacts	Safety	None									
	Maintenance										
Practical	Genera	ıl			Of	fshore					
experience				Field tests in 1	1997.						
Conclusion	D BAT	BAT Emerging Candidate for BAT									
Literature source											

Table B - 9: Tw	vister supersonic separa	ator						
Principle	Twister technology is a static piece of equipment with characteristics similar to those of a Turbo-Expansion /Compression system. Gas is expanded adiabatically in a Laval nozzle, creating supersonic velocities and low temperatures (for example a temperature at inlet of 20 °C drops mid-Twister to -50 °C). The low temperature creates a fog-like condensation, which is typically a mixture of water and heavier hydrocarbons. Chemical hydrate suppression is not required due to the very short residence time as well as the supersonic velocities within the tube. Still at supersonic velocities, the mixture of gas and liquid droplets enters the win section, generating a high velocity swirl. The resulting swirl forces the condensation outward to form a liquid film on the inner wall of the tube. The liquid film is then removed using either a co-axial tube or slits in the wall of the separation tube. The dry gas core remains as the primary stream. After inducing a weak shock wave, 70-80% of the initial gas pressure is recovered using a diffuser. Current natural gas applications are dehydration and hydrocarbon dew pointing, with bulk H2S and CO2 removal under investigation. The technology is currently suitable for offshore and onshore annulications with sub-sea under investigation.							
Process diagram	Se Feed	Inlet Separator Feed Feed Liquid						
Basic elements	Inlet separator, Twister tul	be, second	dary separator, heat integration	of applicat	ole			
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	 Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions 	R [%]	Oil Dissolved oil BTEX Benzene PAHs	R [%]		
	□ Nickel		Demulsifiers		Dispersed oil Oil 	R [%]		
	<i>Remarks:</i> Twister currently (mid 200 develops further. Dew poir specific process conditions	00) achiev nts of – 13 s and may	ves a zero degree dew point, w 8 degrees are expected by mid 7 differ per application.	ith lower de 2003. The	ew points expected as th quoted dew points depe	e technology nd on the		
Technical details	Specific process conditions and may drifer per application. Capacity: 1 to 5 mln m3/day, 100 bar per tube, Multi tube arrangements are possible. LxBxH (m) Typical skid: 10x3x3 Weight (tons) Typical skid: 40 tons Saves space. Saves space.							
Critical operational parameters	Vapour composition under	r mid-Twi	ister conditions must be well w	vithin produ	ct stream specifications			
Operational reliability								

Indication of										
costs										
	Costs	Inve	estment costs	(CAPEX)	Explo	oitation costs (O	OPEX)			
			[€]			[€ / year]				
		prese	ent	new	presen	new				
	gas platform, small									
	gas platform, large		Ν	lo data on model	situation avai	ilable				
	Cost/kg removed	Gas pla	tform, small	Gas platfo	rm, large	Oil pla	tform			
		Evicting	Now	Existing	Now	Evicting	Now			
		Existing [€/kg]	f€/kg]	Existing [€/kg]	[€/kg]	Existing [€/kg]	INEW [€/kg]			
	dissolved oil	[0,00]	[0,1-8]	[*,8]	[0,8]	[0,1-8]	[0,00]			
	dispersed oil		No data on model situation available							
	zinc equivalents									
	Remarks:									
Cross media	Air	No er	nissions to at	mosphere.						
enects	Energy	Fixed	l pressure rati	o device, increasi	ng need for v	wellhead comp	ression.			
	Added chemicals	No ac	No additional chemicals are needed.							
	Waste	None								
Other impacts	Safety	None								
	Maintenance	None								
Practical	Gene	ral			Offsl	nore				
experience										
Conclusion	BAT Emerging Candidate for BAT					BAT				
Literature	[4]	[4]								
source										

Table C - 1: Ski	mmer tank								
Principle	In order to reduce the content of dispersed oil in produced water, a skimmer tank can be used. Separation is based on the difference between the specific gravity of oil and water and the coalescence of oil droplets. When the retention time is sufficient, oil floats to the surface and can be separated by an overflow. This technique is suitable only for non-dissolved components such as dispersed oil with a sufficiently large particle size. Dissolved materials such as benzene and heavy metals cannot be separated using this technique. The skimmer tank or its modified version, parallel plate interceptor (PPI) or corrugated plate interceptor (CPI), is mostly used as part of a set of a number of techniques for the removal of dispersed oil.								
Process diagram	-	produœd		oil		→ ga	s ter		
Basic elements	LP-tank with internal plate	es for oil-v	water	separation and possibly a p	pump				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Prod □ M □ G □ C □ A □ D	duction chemicals Iethanol dycols orrosion inhibitors nti-scale solutions eemulsifiers	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed oil	oil	R [%]	
	<i>Remarks:</i> Removal efficiency for oil practice in the offshore ind required to achieve the per	is 100% t lustry, ren formance	for dro noval stand	pplets > 150 μm, depender seems possible up to oil co ard for dispersed oil.	nt on spec	■ Oil ific gravity and 200 mg/l. Add	l temperature litional techn	20-90 . In iques are	
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	required to achieve the performance standard for dispersed oil.PlatformGas 1 (small)Gas 2 (large)Oil 1Produced water volume (design)1 m³/h6 m³/h175 m³/hRequired area (LxWxH)1,2 x 2,5 x 2 m2,4 x 2,5 x 2 mn.a.Mass (filled)2 tonnes6 tonnes							
Critical operational parameters	The orientation of the oil-v gravity. When an intermed is not easy to control. The limits the separation efficie skimmer tank is too large i	The orientation of the oil-water interface (level control in the tank) is determined by the difference in specific gravity. When an intermediate layer is formed, because of emulsion formation or e.g. ferrous oxides, this interface is not easy to control. The relationship between settling time and acceptable dimensions of equipment offshore limits the separation efficiency to 200 mg/l. A skimmer tank is hardly feasible for oil producing platforms, since a skimmer tank is too large in comparison with a PPI.							
Operational reliability	High, requires regular clea Capable of handling relative content.	ning. vely large	oil co	ontent fluctuations of the in	nfluent, w	ith limited effe	ct on the efflu	uent oil	

Indication of costs	<i>Remarks:</i> Costs should be evaluated in compar comparable dimensions, the costs of	ison with the much n a skimmer tank wou	nore efficient PPI or CPI. For an installation with ld approximately be half.					
Cross media	Air	None.						
enects	Energy	None.						
	Added chemicals	None.						
	Waste	Because of a low fl deposit, mainly san	ow velocity, relatively large amounts of sludge may d and clay, which may be slightly radioactive (NORM).					
Other impacts	Safety	Risk of exposure to operations.	benzene on gas producing installations during cleaning					
	Maintenance	Tank requires regul	ar cleaning.					
Practical	General		Offshore					
experience	Well known and accepted principle f Much operational experience in the p	for separation. process industry.	Technique is mainly applied on gas producing installations.					
Conclusion	BAT Emerging Candidate for BAT							
Literature source	[1]							

Table C - 2: Pro	duced water re-injection	on (PW)	RI)						
Principle	Produced water may be re-injected in the underground through a well. The water is usually filtered, and chemicals are added in order to prevent the formation of bacteria and corrosion. Preferably, the water treatment system will be oxygen-free. When cold fracturing is applied using cooled water, the capacity of the injection pumps will be considerably less. Sometimes, produced water can be injected directly into a producing reservoir, in order to maintain pressure or in order to achieve water flooding.								
Process diagram	produced wate treatment insta	er from a lla ti on	buf	ch emic als		injection pump	∙injection well		
Basic elements	Water treatment (oxygen-1 Possibly: buffer tank, injec	free), tran	sport a	and/or injection pumps.					
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] 100 100 100 100 100	Proc ■ M ■ C ■ C ■ A ■ D	luction chemicals Aethanol Bycols Corrosion inhibitors .nti-scale solutions Demulsifiers	R [%] 100 100 100 100	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] 100 100 100 100 R [%] 100	
Technical details	<i>Remarks:</i> A 100% removal efficience Platform	y, althou	gh a sn	nall part of components w Gas 1 (small)	vill remain Gas	in filters and c 2 (large)	oolers. Oil	1	
	Produced water volume (d Required area (extra) (LX Mass (extra)	esign) WxH)		1 m ³ /h 4 x 4 x 2 m 5 – 10 tonnes	6 6 x 15 - 1	m ³ /h 4 x 3 m 25 tonnes	175 1 8 x 6 2 30-80 1	m ³ /h x 3 m tonnes	
Critical operational parameters	Presence of a suitable laye of output of (existing) wat and paraffins in filters and considerable cost reduction	r for proc er treatme coolers. n).	luced v ent sys Availa	water re-injection and pos tems, e.g. content of oxyg bility of an existing well,	sibly suita gen and pa suitable f	bility for cold f rticles. Possibly or modification	racturing. The deposition for injection	he quality of scales n (leads to	
Operational reliability	PWRI is reasonably reliab degree of certainty. The re efficiency is hard to predic problematic, as is depositi	le, althou sult of co ct as is the on of salt	gh pro ld frac e oxyg s and p	duction and injection qua turing is even harder to pr en content. Corrosion of t paraffins in tubing and line	ntities can redict. Filt ubing or p es.	not be estimate ters require regu production lines	d with a very alar cleaning in wells is o	y high , the ,ften	

Indication of costs									
	Costs	Inve	stment costs	(CAPEX)	Explo	itation costs (C	OPEX)		
			[€]			[€ / year]			
		prese	nt	new	present	t	new		
	gas platform, small	11 530	000	11 380 000	3 079 00	00 1	888 500		
	gas platform, large	12 975	000	12 620 000	3 497 10	00 2	128 100		
	oil platform	6 715 (6 715 000 6		2 258 60	00 1	478 000		
	Cost/kg removed	Gas plat	form, small	Gas platfo	rm, large	Oil pla	tform		
		Existing	New	Existing	New	Existing	New		
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]		
	dissolved oil	39 054	23 954	2 592	1 578	1 146	751		
	dispersed oil	58 582	35 930	9 505	5 784	69	45		
	zinc equivalents	1 121 750	688 015	128 469	78 180	32 378	21 216		
	Remarks:								
	Depreciation in the OPEX is base $ \in 4,5 \text{ MM} $, in a gas field from \notin costs may be reduced to $\notin 0,9 \text{ M}$ for reservation of space and weight installations may be reduced con-	PEX is based on the assumption that a new well needs to be drilled, in an oil field from eld from \in 11,8 MM. When an existing well is available for modification for PWRI, these to \in 0,9 MM – 1,8 MM and in the case of dual completion to \in 1,4 MM – 2,3 MM. Costs ce and weight were not included. Costs for energy consumption for oil producing educed considerably when cold fracturing is applied.							
Cross media effects	Air	Energ diesel	y for injection fuel is used.	n pumps etc. will	increase air	emissions, espe	ecially when		
	Energy	Energ	Energy for transport and injection pumps and possibly cooling pumps.						
	Added chemicals	Deper scaver	Dependent on the installation: scale inhibitor, corrosion inhibitor, oxygen scavenger, biocides, acids, etc.						
	Waste	Sludg buffer	e, which may tank.	be slightly radio	active (NOR	M), will depos	t in the		
Other impacts	Safety	PWRI any ga	influences sauses.	afety very little, since the injection water hardly contains					
	Maintenance	Maint procee depos	enance of filt lures and hig ition in tubin	ters and coolers is fairly intensive, requires complicated gh costs in case of NORM deposition. Possible salt					
Practical	Genera	1			Offsh	ore			
experience	PWRI is applied onshore and of years in oil fields. Water product often too small to allow cold fra	fshore for a ction in gas f	number of ields is	Injection in gas applied rarely. (offshore are hig	fields is tech Costs for inve her than onsł	nically feasible estments and m hore.	e, but is aintenance		
Conclusion	BAT			Emerging Ca	indidate for E	BAT			
Literature source	[1] [2]								

Table C - 3: Dis	solved gas/induced gas	s flotatio	on (E	OGF/IGF)				
Principle	In the process of gas flotation, a gas is finely distributed in the produced water. Raising gas strips oil droplets from produced water. Gas bubbles and oil form a foam on the water, which is skimmed, often by means of a paddle wheel. The foam and part of the water is skimmed into an overflow. Gas may be injected under pressure (Dissolved Gas Flotation, DGF) or by means of an impeller or pump (Induced Gas Flotation, IGF).							
	Dissolved particles such as benzene and heavy metals are not removed, although gas injection may "strip" some volatile components. Sometimes, air is used instead of gas, in which case a major part of BTEX is also removed from the produced water.							
	DGF/IGF usually is the "p	olishing"	step i	n a multiple-step procedur	e to remo	ve dispersed oi	l from produ	ced water.
Process diagram	propulsion ispection hatch ispection h							
Basic elements	Low pressure tank with im	pellers or	pum	os for gas injection				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury**	R [%]		duction chemicals fethanol Bycols Corrosion inhibitors anti-scale solutions Domulaificate	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%] 0-20
				emuismers		Dispersed oil ■ Oil	l	R [%] 60-90*
	Remarks: *: Dependent on, amongst reduced from 100-300 mg/ longer. **: Mercury is not remove	others, sp /l to 20-4(d actively	becific) mg/l v, but	gravity of the oil (and wa . Higher removal efficienc free mercury may separate	ter) and th ies may b because	he temperature, be achieved who of low flow vel	, oil contents en retention t locity.	are ime is
Technical details	Platform Produced water volume (d Required area (LxWxH)	esign)		Gas 1 (small) 1 m ³ /h 1,8 x 1 x 2 m	Gas 6 2 x 1	2 (large) m ³ /h l,5 x 2 m	Oil 175 r 10 x 2,5	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
Critical operational parameters	Mass (filled) Level control and the amore efficiency and the oil control negative effects on the DG problems may occur as a re therefore rarely applied.	unt of wat ent of the F/IGF. Fo esult of do	er wh efflue or this eposit	1,4 tonnes tich is transported via the open. Demulsifiers which are reason, some foaming age tion of salts and ferrous oxi	overflow, e applied : ents may i ides, form	tonnes determine to a in the oil-water need to be appl nation of bacter	45 tor great extent to separator ma ied. When ai ia and corros	nnes he ay have r is used, ion, and is
Operational reliability	The installation requires re	egular clea	aning	in order to remove deposit	ed salts (scale) and other	r deposits (sl	udge).

Indication of costs	<i>Remarks:</i> In view of the dimensions of the equ constructions. This may involve cons approximately € 250 000 (complete i	<i>arks:</i> lew of the dimensions of the equipment, space may need to be created by modification of existing steel structions. This may involve considerable costs. An IGF installation with a capacity of 175 m ³ /h costs roximately \notin 250 000 (complete installation \notin 435 000, possibly modification of steel constructions).				
Cross media effects	Air	Low pressure gas which is resolved. In order to limit air emissions (also in view of health reasons) it is recommended to install portholes in covers for visual inspection of the foam layer.				
	Energy	Energy consumption approximately 5 / 15 / 50 kWh for capacity of 1 / 6 / 175 $m^3/h.$				
	Added chemicals	Foaming agent may need to be applied.				
	Waste	Because of a low flow velocity, relatively large amounts of sludge may deposit, mainly sand and clay, which may be slightly radioactive (NORM).				
Other impacts	Safety	None.				
	Maintenance	Protective clothing installations in view installations because	necessary during cleaning operations: on gas producing v of benzene and possibly mercury, on oil producing e of NORM and sometimes mercury.			
Practical	General		Offshore			
experience	Technique is frequently applied for w Much operational experience in proc	water treatment. ess industry.	Frequently applied offshore for removal of dispersed oil.			
Conclusion	BAT		Emerging Candidate for BAT			
Literature source	[1]					

Table C - 4: Pla	Table C - 4: Plate interceptors (PPI/CPI)							
Principle Process diagram	In order to reduce the dispersed oil content in produced water, a parallel plate interceptor (PPI) or corrugated plate interceptor (CPI) may be applied. Separation is based on the difference between the specific gravity of oil and water and the coalescence of oil droplets on the plates. Since the distance between the plates is small, small oil droplets need to rise over a short distance, allowing for separation after a relatively short retention time. On the plates small oil droplets coalescence to larger droplets and therefore rise easier to the water surface. In CPIs, the undulating plates are almost horizontal. Larger oil droplets float to plates above through holes in the lower plates. When the oil layer becomes thicker, oil flows over and is redirected into the process. This technique is applicable only for non-dissolved components such as dispersed oil with sufficient particle size. On oil producing installations, this technique may form part of a series of techniques for the removal of dispersed oil. On gas platforms, this technique sometimes suffices to achieve the performance standard.							
				<i>σ</i> il		ga	as Iter	
Basic elements	LP-tank with internal pack	c of plates	and p	ump				
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead	R [%]		duction chemicals Aethanol ilycols 'orrosion inhibitors	R [%]	Oil Dissolved BTEX Benzene	il R [Dissolved oil BTEX Benzene	
	□ Mercury □ Nickel			Demulsifiers		■ PAHs Dispersed oil ■ Oil	l	R [%] 80-95
	<i>Remarks:</i> Removal efficiency for oil offshore industry removal balls in the inlet compartm	is 100% efficienci nent may 1	for oil es up aise r	l droplets > 35 μm, depen to 95% are achieved (fro emoval efficiency consid	ident on sp m 1 000-4 erably.	ecific gravity a 000 mg/l to 10	nd temperatu 0-300 mg/l).	re. In the A pack of
Technical details	Platform Produced water volume (design) Required area (LxWxH) Mass (filled)		Gas 1 (small) 1 m ³ /h 2,5 x 0,6 x 1,8 m 2,5 tonnes	Gas 6 2,5 x 1 5,5	2 (large) m ³ /h .,2 x 2,1 m tonnes	Oil 175 1 2,3 x 5 x 38 to	$\frac{1}{n^3/h}$ x 3,5 m nnes	
Critical operational parameters	Level of oil-water interfac retention time, stability of Additional techniques are	e in the P the emuls required i	PI is c sion an n orde	ritical for adequate operand temperature. The to achieve the performation of the temperature of tempe	tion. Separ	ration efficienc	y is depende	nt on
Operational reliability	High but requires regular of Capable of handling relatic content.	cleaning. vely large	oil co	ontent fluctuations of the	influent, w	ith limited effe	ct on the effl	uent oil

Indication of costs	<i>Remarks:</i> Dimensions and weight for a PPI for 175 m ³ /h are presented for 1 installation. In practice, a second PPI may need to be installed as standby equipment. For this reason, on oil producing installations it is recommended to divide the required capacity over a number of PPIs in order to allow for cleaning. The PPI described costs approximately € 400 000 (fully installed).					
Cross media	Air	Energy for oil pump will increase air emissions.				
effects	Energy	Energy consumption for oil pumps.				
-	Added chemicals	None.				
	Waste	Because of a low flow velocity, relatively large amounts of sludge may deposit, mainly sand and clay, which may be slightly radioactive (NORM				
Other impacts	Safety	Risk of exposure to operations.	benzene on gas producing installations during cleaning			
	Maintenance	Pack of plates requ	ires regular cleaning.			
Practical	General		Offshore			
experience	Well known and accepted principle f Much operational experience in the p	or separation. process industry.	Technique is frequently applied on oil producing installations, but also on gas platforms.			
Conclusion	BAT		Emerging Candidate for BAT			
Literature source	[1]					

Table C - 5: Hy	Table C - 5: Hydrocyclones							
Principle	Oil-water separation in hydrocyclones is based on centrifugal forces and the difference between specific gravity of oil and water. Produced water is injected under pressure tangentially. The shape of the cyclone causes an increase of speed, resulting in large centrifugal forces and separation of oil and water. The heavier water will move in a vortex towards the exit of the cyclone, whereas the lighter oil will move in a secondary vortex in the centre of the cyclone towards the inlet. Dissolved components, such as benzene and heavy metals will not be removed. Recently, rotating cyclones were developed, which are a 'compromise' between a hydrocyclone and a centrifuge. Rotating cyclones have higher removal efficiencies than a static hydrocyclone.							
Process diagram		innuges.						
	oil produced water tangential inlet							
Basic elements	Hydrocyclone and the request placed in parallel and integrated in parallel and integrated in the second sec	ired intak grated into	e and one s	outlet pipes. For high cap set of equipment.	acity appl	ications, a nun	nber of cyclo	nes are
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	Proc	luction chemicals Iethanol Ilycols orrosion inhibitors nti-scale solutions	R [%]	Oil Dissolved BTEX Benzene PAHs	oil	R [%]
	□ Nickel		DD	emulsifiers		Dispersed oil	l	R [%]
						Oil		Up to 98
	<i>Remarks:</i> Removal efficiency for oil mg/l (static cyclone) and 4 effluent oil contents may b	is up to 9 0 mg/l (ro e consider	8% fc tating rably	or droplets > 15 - 30 μ m, reg cyclone). When the oil conhigher.	esulting ir ontent in t	n effluent dispe he inlet is more	ersed oil conte e than 1.000	ents of 60 mg/l,
Technical details	Platform	• 、		Gas 1 (small)	Gas	2 (large)	Oil	1 3 л
	Produced water volume (de Required area (LxWxH)	esign)		$1 \text{ m}^{7}\text{/n}$ 0.8 x 2.5 x 1 m	0: 1 x 3	$m^{1}/n/$ x 1 2 m	1/51 3 x 4 x	n'/n 17m
	Mass (filled)			0,7 tonnes	1,7	tonnes	9 ton	ines
Critical operational parameters	Disadvantage is that only I Oil-water emulsions can ha neutrally buoyant. Rotating In order to allow for adequ The process could therefor	arge partie ardly be tr g cyclones ate operat e be affec	cles (reated s can 1 tion of ted by	>15 µm) can be removed, , neither can particles which remove particles up to 5 µ f hydrocyclones, a constant y the presence of gas.	depending ch are cov m. it inlet pre	g on the specifi ered by an oil essure and cons	ic gravity of t layer and wh stant flow is r	the oil. ich are equired.
Operational reliability	The system is robust and c the performance standard f is less reliable when fluctu multiple cyclones. A rotating cyclone is vulne	ompact. U for dispers ations in t erable and	Jsuall ed oil he pro may	y, subsequent treatment te l. Since the oil content is h ocess occur. It is recomme require frequent maintenan	chniques a ighly dep ended to d	are installed in endent on the t ivide the requin se of rotating p	order to com hroughput, th red capacity o parts.	nply with ne system over

Indication of costs									
	Costs		Invest	ment costs (CAPEX)	Explo	itation cost	s (OPEX)	
			D	[€]			[€ / year]		
	1.0 11		Present		new	present	t	new	
	gas platform, small		n.c.		n.c.	n.c.		n.c.	
	gas platform, large	-	n.c.	、 、	n.c.	n.c.	n	n.c.	
			/90.000	,	030 000	248 70	0	147 100	
	Cost/kg removed	Ga	is platfo	orm, small	Gas platfor	rm, large	Oil	platform	
		Exis	ting	New	Existing	New	Existing	New	
		[€/k	kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	
	dispersed oil	n.o	c.	n.c.	n.c.	n.c.	38	22	
	Remarks:		·		·				
Cross media	Air	(Comparable to other techniques, in view of energy consumption.						
cheets	Energy	I	Energy	for pumps t	o pressurise influ	ent, 24-30 k	W (0,2 kW)	u/m ³).	
	Added chemicals	1	None.						
	Waste] [The 'heavy phase' (sand etc.) and depositions in equipment (scaling), possibly slightly radioactive (NORM).						
Other impacts	Safety	١	None.						
	Maintenance	F	Relative	ely little, alt	Ithough scale may deposit on hydrocyclones.				
Practical	Gen	neral				Offsl	nore		
experience	Well known and much used Much operational experienc	l principle f	for sepa ocess in	ration. dustry.	Much experience a long history of	e in offshore f developmer	oil-water s nt.	eparation. Has	
Conclusion	BAT				Emerging Ca	ndidate for E	BAT		
Literature source	[1]								

Suitable for the	Heavy metals	R [%]	Pro	duction chemicals	R [%]	Oil	R [%]
removal of:	□ Cadmium	[/ •]		fethanol	>99 *	Dissolved oil	[/•]
	\Box Zinc			lvcols		□ BTEX	
R = removal	□ Lead			orrosion inhibitors	**	Benzene	
efficiency	□ Mercury	?		nti-scale solutions		\square PAHs	
	□ Nickel	-		emulsifiers		Dispersed oil	D [0/,1
							K [/0]
						■ Oil	
	Remarks:						
							2
	Proven operational record	since 199) 4 on	Offshore Gas, Condensate	e and LNG	FProduced Water (> 50 yea	irs of
Tashrical dataila	Don Unit			Minimum		Morimum	
rechnical details	Treatment canacity (m3 pr	oduced w	ator	WIIIIIIIIIIII		waximum	
	per hour)	ouuceu w	ater	0.3-15		150	
	Gross Package volume			$6.2 \times 4 \times 3 \text{ m}$		10 x 6 x 12	
	(LxWxH)			10 ton			
	Operating weight			10 1011		250 ton	
	CAPEX (€)			1 000 000		10,000,000	
	OPEX (€/year)			50,000		250,000	
	Cost per m3 produced wat	er(€/m3)		0,60		0,24	
Critical							
operational	The main critical paramete	r is the m	easure	ed outlet concentration vs.	discharge	limit. If this comes close to	o the
par ameter s	a weekly basis. The reduct	material n	eeds 1 manc	to be replaced. This is a ve e is very stable and does n	ery slow protection of the slow of the slow protection of the slow p	overnight.	one say on
Operational	-The MPPE unit is fully a	itomatic a	nd re	mote controlled and has be	een in ope	ration on an unmanned plat	form since
reliability incl.	2002					I I I I I I I I I I I I I I I I I I I	
information on	-Every 2 to 4 years the 1	MPPE ma	aterial	have to be replaced by	exchanging	ng the columns with MPP	E material
downtime	(several hours for exchan	ge). A se	t of s	pare columns with fresh	MPPE m	aterial is always available	onshore at
	clients premises.						
	Remarks:			1000/ design flame to 00/			
	- The unit has a turn down/	up ratio fr	om >	100% design flow to 0%.	- C - 1		10 h : h
	inlet concentrations than d	esign the	reduct	tion factor remains 99%.	n. So also	during upsets leading to 5-1	to x nigher
	- At lower flows than desig	gn the red	uctior	n factor improves (10% lov	wer flow th	han design allows a 50% hig	gher inlet
	level while still meeting th	e demand	ed dis	scharge level).			
	-MPPE unit is immediate a	at separati	on pe	rformance after start up.			
	-MPPE unit can operate ba	tchwise					

			-					

Cross media	Air	No air emission					
effects	Energy	Steam 3-5 kg per 1	n3				
	Added chemicals	No					
	Waste	No					
Other impacts	Health and Safety						
	Maintenance interval and availability (% per year)						
Practical	General		Offshore				
experience							
development	X Implemented offshore		Practical applicability:				
	X Used onshore		-Offshore Gas, Condensate, LNG produced water (since 1994 > 50 years accumulated experience).				
	Netherlands (3)		-Onshore Shale gas produced water (proven Field tested)				
	Shell/Exxon (NAM B.V.), k15A, Of Netherlands	fshore	-Onshore Shale oil produced water (proven bench scale tested)				
	Shell/Exxon (NAM B.V.), k15B, Of Netherlands	fshore					
	Total F15A E&P , Of Netherlands	ffshore	Driving force for implementation (e.g. legislation, increased yield, improvement product quality):				
	Statoil/Shell, OrmenLange,	Norway	-legislation				
	Onshore		-discharge water quality;; 95 to 99% Environmental Impact Factor Reduction (published data Norwegian				
	Statoil Kollsnes, Onshore (4)	Norway	Industry) -removal of toxic content for Zero Harmful Discharge -Removal of toxic content to protect bio treatment from				
	Statoil Kollsnes, Onshore (5)	Norway					
	Statoil Hydro Åsgard Å, Off (2)	fshore Norway	toxicification /collapse if produced water is treated onshore (Ormen Lange; Kollsnes:Pluto).				
	Offshore South China Sea. Offs	hore Malavsia	-full recovery of hydrocarbons				
	(2)		-no waste stream; 100% water and separated oil/hydrocarbon recovery				
	Woodside Pluto, LNG Ter	minal, Australia					
	Shell Floating LNG Prelude Off	shore Australia	Example plants				
	Inpex Ichthys FPSO Offs	hore Australia	MPPE Gas / Condensate/LNG Produced Water :				
	BP West Nile, Ons	shore Egypt	Accumulated proven industrial performance > 50 years Constituents Inlet ppm				
	(1) $1m^3/h = 4,4$ gpm		Removal				
	(2) Long duration test		$\begin{array}{llllllllllllllllllllllllllllllllllll$				
	(3) Combined groundwater and proce	ess water	PAHs = 2 - 80 > 99%				
	(4) Mobile unit 2005 – 2011		NPDs 2 - 80 > 99% Field chemicals 20-50%				
	(5) Permanent unit replaced mobile u	unit in 2011	Environmental Impact Factor 95-99% reduction				

Literature								
source	BERGERSEN, L. AND JACOBSSON, J. 2006—New Offshore Tie-ins and impact on Onshore Facilities, Field Case Kollsnes. <i>Tekna Produced Water Management Conference</i> , Stavanger, Norway.							
	BERGERSEN, L., JACOBSSON, J. AND MEIJER D.TH. 2006—Solving the Impact of High Toxic Loads in the Produced Water at the Kollsnes Gas Terminal by Applying the MPPE technology. <i>NEL Produced Water—Best Management Practices</i> , Kuala Lumpur, Malaysia, 29–30 November.							
	BULLER, A. T., JOHNSEN, S. AND FROST, K. 2003—Offshore produced water management—knowledge, tools and procedures for assessing environmental risk and selecting remedial measures. Memoir 3. Stavanger, Norway: <i>Statoil Research and Technology Offshore</i> .							
	CHEN, G.Z. AND EBENEZER T.I. 2012—Produced water treatment technologies. Faculty of Engineering, Department of Chemical and Environmental Engineering, and Energy and Sustainability Research Division, University of Nottingham, Nottingham NG7 2RD, United Kingdom. 4 July.							
	ALEN, A.V. 2004—Produced Water Regulations in the Netherlands. <i>NEL Oil-in-Water Monitoring Workshop</i> , berdeen, United Kingdom, 22–23 September.							
	<i>ERT/ORKNEY WATER TECHNOLOGY CENTER</i> , 1997— The removal of dissolved and dispersed organic components from produced water. ERT F92/178, requested by Exxon Mobil, Total, Amarada Hess.							
	GRINI, P.G., HJELSVOLD, M. AND JOHNSEN, S. 2002— Choosing produced water treatment technologies based on environmental impact reduction. <i>HSE Conference, Kuala Lumpur</i> , Malaysia, 20–22 March, SPE paper 74002.							
	ITHNIN, I.B. AND CHRISTOPHER, G. 2006—The discharge of produced water from oil and gas production: Legislation requirement in Malaysia. <i>NEL Produced Water—Best Management Practices</i> , Kuala Lumpur, Malaysia, 29–30 November.							
	KAA, C.C.R. VAN DER AND PETRUSEVKI, B. 1988— Inventarisation of removal techniques to reduce the benzene heavy metal emissions from offshore platforms. (In Dutch). <i>NOGEPA (Netherlands Oil and Gas Exploration and Production Association) and Dutch Government</i> , Report 61944-00-32-301-2.							
	KLOPPENBURG, M.F.C. AND VENEMA, W. 1997—De-oiling condensed glycol regenerator overhead vapours by steam stripping. 1997 <i>SPE/UKOOA European Environmental Conference</i> , Aberdeen, United Kingdom, 15–16 April, SPE paper no. 37846.							
	LOWE, I. 2006—Shaping a sustainable future—challenges for Australia's oil and gas industry. APPEA Environment Conference, Coolum, Australia, 19–21 November.							

	Suital	ole for	Removal	Efficiency	Reference to source documentation
			(%	%)	
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil		Х		99%	
- Dissolved oil		Х		99%	
Specific oil components:					
- BTEX		Х		99%	
- NPD		Х		99%	
- PAH's 16 EPA		Х		99%	
- Others (indicate)		Х		99%	
- Alkyl Phenols					
Heavy metals		Х		Х	Measured on 4 different Offshore
- MERCURY		Х		81-99%	produced water streams
Offshore chemicals					
- methanol					
- glycol					
- corrosion inhibitors		х		20-50%	
- biocides					
- scale inhibitors					
- surfactants		х		20-50%	
- Others (indicate)					
- H2S scavengers		х		х	
- Emulsion breaker		Х		20-50%	
- Anti foam		Х		20-50%	
		Х		20-50%	

Table C - 7: Cer	ntrifuge							
Principle	A centrifuge may be used centrifuge is based on cen water is injected into the centrifuge, oil will collect oil-water interface needs to A centrifuge allows for se Centrifuges are usually ap On oil producing installati gas flotation units, thereby	in order t trifugal for e centrifu, in an inne o be main paration o plied as a ons the us v avoiding	to reduce the dispersed oil cont orces and the difference in spec ge where it is brought in rot er layer. Oil and water are rem- tained. Oil is pumped back into of smaller oil droplets than a h polishing step when the perform se of centrifuges may be useful build-up of sludges.	tent in pro ific gravit, ation. Wa oved sepan the proces ydrocyclon mance star to clean s	duced water. O y of oil and wa ter will collect rately, under co ss, water is disc ne. The energy idard cannot be kimmings from	il-water sepa ter. Degasse at the outs ntrolled con- harged. consumption achieved. degassers a	aration in a d produced side of the ditions. An n is higher. nd induced	
Process diagram								
		water water						
Basic elements								
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] * * * * R [%] 95	
	<i>Remarks:</i> Removal efficiency for oil dispersed oil from 400 mg Dissolved components (he *: In the case of high arom hydrocarbons will be remo	is 100% /l to 40-10 avy metal natic hydro oved via th	for droplets > 3 μm, depending 0 mg/l. ls, benzene) will not be remover ocarbon content, e.g. in case of the condensate.	on specifi d. process m	c gravity and te alfunction, part	mperature. F	Removal of	
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)	Gas 1 (small) 1 m ³ /h 2 x 1,2 x 2 m 2,1 tonnes	Gas 6 2,3 x 1 3,1	2 (large) m^{3}/h ,5 x 2,8 m tonnes	Oil 175 r n.a	1 n ³ /h a.	
Critical operational parameters	Especially suitable for sma feed. Use of corrosion resi contains oxygen.	all water s stant mate	treams. Relatively high energy erials is recommended, especial	consumpt ly in cases	ion. Requires w	ater degassin ature or wat	ng prior to er which	
Operational reliability	Centrifuges require freque standby equipment.	nt cleanin	g (contamination) and maintena	ance. A se	cond centrifuge	is often inst	alled as	

Te d'action of											
costs											
	Costs		Inves	stment costs ((CAPEX)	Exploitation costs (OPEX)			OPEX)		
				[€]			[€ / ye	ar]			
			preser	nt	new	presen	t	new			
	gas platform, small		235 00	00	175 000	83 000)	49 500			
	gas platform, large		395 00	00	310 000	162 40	0	108 600			
	oil platform	n.a.			n.a.	n.a.			n.a.		
	Cost/kg removed	C	as plat	form, small	Gas platform, large		0	il pla	tform		
		Ex	isting	New	Existing	New	Existi	ıg	New		
		[€	[/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]		
	dispersed oil	1	663	991	465	311	n.a.		n.a.		
	Remarks:	1									
Cross media	Air		Energ	y for centrifu	ge and pump wil	l increase air	emission	3.			
circus	Energy		Energy for centrifuge and pump: 1,5 kW (small gas installation), 10 kW (large gas installation).								
	Added chemicals		None.	None.							
	Waste		Depos slightl	ited material y radioactive	in equipment (sa (NORM).	nd, clay, scal	e etc.) wł	ich r	nay be		
Other impacts	Safety		Risk o	f exposure to	benzene during	cleaning ope	rations.				
	Maintenance		Centri centrif	fuges require uges are ofte	cleaning every f	ew days, self remove sludg	-cleaning e.	mecl	nanisms in		
Practical	Genera	ıl				Offsl	nore				
experience	Much operational experience in industry.	the p	orocessi	ng	Centrifuges are treatment, main	applied offsh ly on gas pro	ore for pr ducing in	oduc stalla	ed water tions.		
Conclusion	BAT				Emerging Ca	undidate for E	BAT				
Literature source	[1]										

Table C - 8: Ste	am stripping (end flow	·)						
Principle	Hydrocarbons can be rem column and brought into removal of dissolved oil (I condensed and separated by steam can be directed to	oved from extreme BTEX), bu easily bec the cond	n proc conta ut will ause lensat	luced water by means of ct with steam (known a l also remove aliphatic hy of the high hydrocarbon e treatment system; water	steam stri s stripping drocarbor content. H can be dis	pping. The wa g). This techn as. Steam and h lydrocarbons th scharged.	ter is fed into ique is suitab aydrocarbon v nat have been	b a packed ble for the rapours are a separated
Process diagram	produced water	buffer tark		ale ibitor water		am boik	er	TE X Jator
Basic elements	Buffer tank, feeding pump condensate pump, (electric	, heat excl c) re-boile	hange r	r, stripping column, cond	ensor, BT	EX-accumulate	or, re-circulati	ion pump,
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Proc ■ N □ G ■ C ■ A ■ D	duction chemicals Aethanol Hycols Corrosion inhibitors Anti-scale solutions Demulsifiers	R [%] 10-80 * *	Oil Dissolved BTEX Benzene PAHs Dispersed oil	oil	R [%] >90 >90 >90 >90 R [%] >85
	<i>Remarks:</i> The expected removal effit from 30 mg/l to < 3 mg/l *: The hydrophobic part is	ciency for partly rer	BTE	X is high: reduction from	50 mg/l to	o < 6 mg/l, alip	hatic hydroca	rbons
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) 1 m ³ /h 3 x 2 x 5 m 12 tonnes	Gas 6 6 x 20	2 (large) m ³ /h 3 x 5 m tonnes	Oil n.a	1
Critical operational parameters	Since produced water usua boiler and the heat exchan slight throughput by mean enough in order to allow for guarantee a constant throu avoiding disruption of the	ally contai ger. In orc s of a re-c or equal le ghput, a b process in	ns sal ler to ircula evels i ouffer n the c	ts and solid particles, prol prevent concentration of s tion line from the boiler t n boiler and column (and tank is required. This also olumn.	blems with salts in the o the colu- above the provides	a depositions (see boiler, it is recomm. The steam bundle of the bandle billity	scale) may occ commended to line must be l poiler). In ord to skim off oi	cur in the o create a large ler to il,
Operational reliability	When the produced water enable removal of salt dep	contains la ositions.	arge a	mounts of salts, the instal	lation will	l need to be shu	ıt down regula	arly to

Indication of										
costs	Casta	 	Inver	stment costs	(C		Evolo	itation	costs (f	
	Costs		mves	[€]	(C	ALLAJ	Елрю	[€ /	vear]	JFEA)
			preser	nt		new	present	;		new
	gas platform, small		670 00)0		560 000	238 000)	10	69 200
	gas platform, large		990 00)0	1	840 000	401 400)	2	76 900
	oil platform		n.a.			n.a.	n.a.			n.a.
		<u> </u>				<u>.</u>				
	Cost/kg removed	G	as platf	orm, small		Gas platform, large			Oil platform	
		Exi	isting	New		Existing	New	Exi	sting	New
		[€/	[€/kg] [€/kg]		[€/kg]	[€/kg]	[€/	/kg]	[€/kg]	
	dissolved oil	3 4	404	2 412		327	226	n	.a.	n.a.
	dispersed oil	31	064	2 171		277	191			
	zinc equivalents	5	050	3 578		1.212	836			
	Remarks:	ly high	h doon	to the fact th	ot	ment of the heat	is recovered	Con	motion	con ho
	reduced considerably when hea	it from	i the pr	ocess or from	n t	he exhaust gases	s from turbir	nes is u	umption ised.	can be
Cross media effects	Air		Requir gases 1	red energy with remain.	vill	increase air emi	issions. Afte	r the co	ondenso	r very few
	Energy		Approx	ximately 40 l	kV	Wh/m ³ produced	water (main	nly for	boiler).	
	Added chemicals		Scale i exchar high te	nhibitor is no iger and boil emperatures (lee ler (de	ded in order to p as much as poss ependent on mat	orevent depo sible. Corros terials applie	sition (ion inl d).	of salts i 1ibitors i	n the heat n view of
	Waste		Sludge from t	will deposit he boiler reg	t ir gul:	n the buffer tank arly (mechanica	. Salt deposi lly or using a	tions n acids).	need to b	e removed
Other impacts	Safety		No sig	nificant influ	uer	nce.				
	Maintenance		Mainte salt co costs i	nance on bo ntent in prod n case of NC	oile luc DR	er and heat excha ced water is high M deposition.	anger may b 1. Complicat	e consi ed proc	iderable cedures :	when the and high
Practical	Genera	ıl					Offsh	ore		
experience	Practical experience was gained production operations and on p	1 in on artial ៖	streams الم	gas offshore.	F s e	Practical experie streams. Current end stream treatr	nce was gair ly there are r nent operatio	ned off no offs ons.	shore on hore app	n partial blications of
Conclusion	BAT				٦	☐ Emerging Car	ndidate for B	AT		
Literature source	[1]				<u> </u>					

Table C - 9: Ad	sorption filters							
Principle	Adsorption filters may be tank with filters. These fil to a lesser extent, aroma adsorbed mainly chemical	applied f ters conta ttic hydro ly.	for the in che ocarbo	removal of aliphatic hyd mically treated cellulose f ns. Regeneration of the	lrocarbon fibres wh filters is	s. Water is pu ich adsorb alip not possible	mped through hatic hydroca since contar	h a process arbons and, ninants are
Process diagram								
	oil+ w a te r (Ð		filters			w ater	
Basic elements	Process tank with filters and	nd pump.]			
Suitable for the	Heavy metals	R [%]	Prod	luction chemicals	R [%]	Oil		R [%]
removal of:	Cadmium			lethanol	-	Dissolved	oil	<10*
R = removal	☐ Zinc		G	lycols	>50	BTEX		<10*
efficiency	□ Lead			orrosion inhibitors		Benzene		<10*
-	□ Mercury			emulsifiers		PAHs	•	<10 ⁻
						Dispersed of	1	R [%]
						Oil		95
	<i>Remarks:</i> Dissolved components, ex solid particles > 20 μm, so *: When the filter is new, the content is high, the filter we	cluding an metimes i this remov vill soon b	romati in the val effi be satu	c hydrocarbons, will not b form of scale. iciency may be considerab rated.	e remove bly higher	d. Heavy meta	ls are only re aromatic hyd	moved as rocarbons
Technical details	Platform			Gas 1 (small)	Gas	2 (large)	Oil	1
	Produced water volume (d	esign)		$1 \text{ m}^3/\text{h}$	6	m^3/h	n.	a.
	Required area (extra) (LxV	WxH)		1,6 x 0,8 x 2 m	2,1 >	x 1 x 2 m		
	Mass (extra)	1 .	D (1,3 tonnes	1,9	tonnes	1	1
Critical operational parameters	efficiency dependent on co existing offshore installation	ons.	. Parti n of pi	cles > 20 μm will be remo roduced water, and should	be deterr	nay also lead to nined by mean	s of field test	emoval s, i.e. on
Operational reliability	High, although frequent re process, in order to be able	placemen e to achiev	t is red ve the	quired. Mainly applicable performance standard for	in situatio dispersed	ons in cases of oil.	problems in t	he regular

Indication of costs	<i>Remarks:</i> An adsorption filter with a capacity of installation costs. OPEX are estimated	of 15 m ³ /h costs appr ed to be € 0,4 /m ³ .	roximately € 45 000, excluding pump, equipment and
Cross media	Air	Energy for feed put	np will increase air emissions.
enects	Energy	Energy for feed put	np.
	Added chemicals	None.	
	Waste	Saturated filters (al slightly radioactive	iphatic hydrocarbons, clay, sand, scale which is often – NORM).
Other impacts	Safety	Risk of exposure to	benzene when filters are replaced.
	Maintenance	Filters need frequen	nt replacement.
Practical	General		Offshore
experience			Applied offshore on some installations.
Conclusion	BAT		Emerging Candidate for BAT
Literature source	[1]		

Table C - 10: M	embrane filtration								
Principle	Aliphatic hydrocarbons m 3,5 bar) is guided along a Build-up of filter cake is permeate is directed to the The components that ren periodically. The main par settling tank, where the oil	Inplatic hydrocarbons may be removed by means of membrane filtration. Water (low pressure, approximately 5 bar) is guided along a number of ceramic or synthetic filter elements which contain pores of $0, 1 - 0, 2 \mu m$. uild-up of filter cake is avoided by a cross flow and a turbulent flow along the membrane surface. Part of the ermeate is directed to the pressure-pulse system for cleaning of the membranes, the remaining part is discharged. he components that remain in the membrane after the pressure pulses need to be removed with chemicals eriodically. The main part of aliphatic hydrocarbons and solids remain in the concentrate, which is directed to a ettling tank, where the oil can be separated easily in view of the high concentrations.							
Process diagram	roduced water buffer tank produced water i liter								
Basic elements	Buffer tank, pre-filter, mer	nbrane fil	tratio	n unit, pressure-pulse syste	em, settlin	g tank.			
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%]	Prod N C C C A D D	duction chemicals Methanol Blycols Corrosion inhibitors Anti-scale solutions Demulsifiers	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed oil Oil	oil	R [%] * * * * R [%] 70-90	
	<i>Remarks:</i> Measurements during tests 10 mg/l.	revealed	remo	val of 150 mg/l to 15 mg/l	, from 110) mg/l to 30 mg	g/l and from '	70 mg/l to	
Technical details	Platform Produced water volume (d Required area (LxWxH) Mass (filled)	esign)		Gas 1 (small) 1 m ³ /h 2 x 2 x 2 m 4 tonnes	Gas 2 6 2 x 4 10	2 (large) m ³ /h x 2,5 m tonnes	Oil n.a	1 a.	
Critical operational parameters	When produced water com strontium sulphate are diff for the removal of these su chemicals than polymer m relatively constant flow sp equipment in order to avoi oxygen, filtration of ferrou established empirically.	Then produced water contains large amounts of salts, membranes will clog easier. Especially barium sulphate and rontium sulphate are difficult to remove chemically. Chemicals for regeneration of membranes need to be suitable or the removal of these sulphates and clay particles. Ceramic membranes are more robust and more resistant to nemicals than polymer membranes. Pre-filtration is required in order to avoid erosion of the membranes. A latively constant flow speed (buffer tank) is needed for optimal filtration. No oxygen should be able to enter the puipment in order to avoid formation of ferrous oxides. When the permeate for the back pulse is not free of kygen, filtration of ferrous oxides is required. Duration and frequency of pressure pulses are critical and need to be stablished empirically.							
Operational reliability	During offshore testing, m reliable. It is expected that relatively intense supervisi hydrocarbons from salty w	embrane e this equip ion is requirater.	eleme oment tired.	nts were not fully regenera t would require frequent sh Experience onshore confir	ated, rende nut down f rms proble	ering this techn or maintenance ematic removal	ique insuffic e. Furthermo of aliphatic	iently re,	

Indication of costs										
	Costs		Inves	tment costs (CAPEX)		Explo	itation c	osts (C	OPEX)
			nreser	t [C]	new		nresent	y	calj	new
	gas platform, small		555.00	00	455 000		216 000		143 900	
	gas platform, large		915 00	00	745 000		448 200)	3	28 000
	oil platform		n.a.		n.a. n.a.		n.a.		n.a.	
	Cost/kg removed	0	Gas plat	form, small	Gas platforr		m, large	Oil platform		tform
		Existing New			Existi	Existing New I		Exist	ing	New
		[€	E/kg]	[€/kg]	[€/kş	g]	[€/kg]	[€/k	g]	[€/kg]
	aliphatic hydrocarbons BTEX	5	140 -	3 419	1 52	3	1 115 -	n.a	ì.	n.a.
	Remarks:									
Cross media effects	Air		Little e	effect on air o	emissions ir	n view	of low energ	gy consu	Imption	n.
	Energy		Estima	ited energy c	onsumption	n: 1,2 k	xWh/m ³ prod	luced wa	ater.	
	Added chemicals		Chemi	cals for perio	odical clean	ing an	d conditionii	ng of me	embran	ies.
	Waste		Relativ relativ NORM filters	vely large am ely fast with 1. This would to be regarde	amounts of sludge in settling tank. Membranes are clogge th sulphates which are hard to remove and may contain uld cause complex cleaning procedures or removal. Pre- rded as waste after use.					are clogged contain oval. Pre-
Other impacts	Safety		Worki exposi	ng with vario	rious chemicals, which may cause injury (burns). Risk of ene when filters and membranes are replaced.					s). Risk of
	Maintenance		Relativ remov	vely high ma al of sludge f	intenance: r rom settling	eplace g tank.	ement of filte	ers and n	nembra	anes,
Practical	Gener	al					Offsh	ore		
experience	Well-known and applied princ in onshore process industry.	lied principle for water treatment dustry.				ree off ns offs meml	fshore gas / g shore the Net brane units.	gas-cond herlands	lensate s are ec	producing quipped with
Conclusion	■ BAT	BAT						BAT		
Literature source	[1]									

Table C - 11: V	-Tex											
Principle	Gas enters the circular fla located around the chambe outlet port, mounted on th velocity, which can incre- sprayed into the centre o contact with the rotating s continue to pass through t centrifugal acceleration wh	as enters the circular flat vortex chamber of a gas liquid contactor tangentially, through a series of vanes, evenly becated around the chamber rim. The gas follows the circular contour of the chamber and moves inwards towards an utlet port, mounted on the central axis of the chamber. This relatively slow radial movement increases the tangential elocity, which can increase to as much as 15 m/s. At the same time, the liquid phase of the scrubbing liquor is prayed into the centre of the chamber forming droplets, which fly out towards the chamber periphery, making ontact with the rotating gas. Closing contact speeds can be high, allowing intense mass and heat transfer. As they ontinue to pass through the spinning gas, the droplets develop a tangential velocity component and this generates a entrifugal acceleration which disentrains the drops by spinning them towards the chamber wall.										
Process diagram		Gas phase outlet										
	Targential gas phase inlet Scub liquor vetervoir Scrub liquor pump											
Basic elements	Stripper with integral sum	p mounte	d on a Carbon Steel skid, electric	cal pre-heat	er, centrifugal pumps							
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Zinc Lead Mercury	R [%]	 Production chemicals ■ Methanol □ Glycols □ Corrosion inhibitors □ Anti-scale solutions 	R [%]	Oil Dissolved oil BTEX Benzene PAHs	R [%]						
	□ Nickel		Demulsifiers		Dispersed oil	R [%]						
					■ Oil							
	Remarks:		1			I						
Technical details	Throughput (m ³ /da	y)	Weight (dry / wet, Te	e)	Overall size l x h	x w (m)						
	10		1,0 / 1,5		2,0 x 1,15 x	2,0						
	100		2,25 / 3,0		2,75 x 1,55 x	2,78						
Critical operational parameters	The column has a design temperature range of -10 °C to 50°C, a design pressure of 3 bar. The material of construction will be carbon steel.											
Operational reliability	The result of several trails hydrocarbons (both aroma	showed t tics and a	hat this technology was highly en- liphatic hydrocarbons) from such	ffective in 1 h mixtures.	removing a wide range o	f						

Indication of											
costs											
	Costs	Investment costs (CAPEX) Exploitation costs (OPEX)									
			[€]		[€ / year]						
		presen	t	new	present		new				
	gas platform, small										
	gas platform, large		N	o data on model s	situation avai	lable					
	Cost/kg removed	Gas platform, small Gas platform, large Oil platform									
		Existing	New	Existing	New	Existing	New				
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]				
	dissolved oil			01							
	dispersed oil		N	o data on model s	situation avai	lable					
	zinc equivalents										
	Remarks:										
Cross media effects	Air										
	Energy										
	Added chemicals										
	Waste										
Other impacts	Safety										
	Maintenance										
Practical	Genera	վ			Offsl	nore					
experience											
Conclusion	D BAT			Emerging Ca	ndidate for E	BAT					
Literature	[3]										
source											

Table C - 12: Fi	lter coalescer									
Principle	Dispersed oil may be removes vessel containing packed r flows through the media w larger droplets rise to the s technique may be used on treatment unit. This technique is not suita	Dispersed oil may be removed from produced water by means of a filter coalescer. The coalescer consists of a essel containing packed media of corrugated sheets, mesh, co-knit or irregular wool format. The produced water lows through the media where the small oil droplets (< 10 μ m) conglomerate and form larger droplets. These arger droplets rise to the surface quicker than smaller ones and can then be removed from the top of the vessel. The echnique may be used only as a coalescer to enlarge oil droplets, which can then be separated in a secondary reatment unit.								
Process diagram		oil oil/water								
Basic elements	Pump, vessel, filter, medi	a								
Suitable for the removal of: R = removal efficiency	Heavy metals Cadmium Cadmium Linc Lead Mercury Nickel	R [%]	Production chemicals Methanol Glycols Corrosion inhibitors Anti-scale solutions Demulsifiers 	R [%]	Oil □ Diss □ BTI □ Ber □ PAI Dispen □ Oil	solved oil EX Izene Hs rsed oil	R [%] R [%] 30			
	Remarks:									
Technical details	Type of installation Produced water volume (d Required area for injection Mass of equipment for injection	lesign) 1 vs. Wate ection vs.	er treatment installation Water treatment installation	Gas 1 (1 m 1 x 1 :	(small) l ³ /h x 2 m	Gas 2 (large) 6 m ³ /h 1,5 x 1,5 x 2,5 m	Oil 1 175 m ³ /h			
Critical operational parameters	Proper operation depends equal to the pressure in the results achieved in the coa Fine media which may be treatment may be necessar	on droplet e next trea lescer. Ap required t y to remo	t size of the input. Not suitable t timent step, since large difference oplicability is often established of to give coalescing of smaller oil ve solids from the produced wa	for emulsi ces in pres empiricall particles ter before	ons. Pre ssure pur y. are parti entering	ssure in coalescer p nps and valves ma cularly subject to f g the filter coalesce	preferably y undo the ouling. Pre- r.			
Operational reliability	Operation of the filter will	depend o	n the type of media used and th	e amount	of solids	s in the produced w	ater.			

Indication of costs	Costs	Investme	nt Costs (C [€]	CAPEX)	Exploi	tation Costs ([€ / year]	OPEX)
	Gas Platform, small Gas Platform, large Oil Platform						
	Cost/kg removed	Gas Platfor	m, small	Gas Platfo	orm, large	Oil P	latform
	<u>v</u>	Existing	New	Existing	New	Existing	New
	Dissolved oil Dispersed oil Zinc equivalents						
Cross media	Air	None.					
effects	Energy	None.					
	Added chemicals	None.					
	Waste	Little					
Other impacts	Safety	None.					
	Maintenance	Sand, clay and replacement of slightly radioa	scale are h f the filter i ctive (NOF	nard to remove material neces	e, rendering sary. Remov	frequent clea red material r	ning or nay be
Practical experience	General	l			Offsho	e.	
Conclusions							
Literature source	Produced Water Management To Liquid-Liquid Coalescer design	echnology Descripti manual. ACS Indus	ons, Fact S tries. LP	heet – Coales	cence		

Technical details	Type of Installation	Min.	Max.				
	Produced water volume (M3/Hr)	10	500				
	Gross package volume (LxWxH, m)	3x1,5x2	10x2x3				
	Operating weight (tonnes)	3	13				
Critical operational parameters	Typically, the design condensate volume is set as 2% of the produced water production rate. Produced water from the HP and LP system is boosted up to a pressure in excess of 40 bar (exceeding the bubble point of the NGL by 10 bar) to enable the NGL to be in a liquid state at the hydrocyclone reject pressure.						
Operational reliability	Heavily dependent on condensate composition. In the liquid state the condensate must remain in the reject line upstream of the hydrocyclone reject control valve. In the gaseous state the condensate should have the same atmospheric pressure and temperature as the produced water.						

Indication of costs	Costs	Investment Costs (CAPEX) [€]				Exploitation Costs (OPEX) [€/Year]		
		Presen	t	New		Present		New
	Min.	-		1,4 Million		Low		Low
	Max.	-		4,4 Million		Low		Low
	Cost/kg remov	ed	Gas pla	atform, small	Gas pl	atform large Oil		platform
			Existing [€/kg]	New [€/kg]	Existin; [€/kg]	g New [€/kg]	Existing [€/kg]	g New [€/kg]
	dissolved oil dispersed oil zinc equivalents		No data on model situation available					
	<i>Remarks:</i> Installation cost where the gover retrofit implement conditions and t	s are understood nments Zero Di entation of the co he target remov	l to be cons scharge po ondensate i al efficienc	siderable. CTous licy has driven t nduced extraction y.	r has been w he feasibilit on process a	videly applied in ty of this polishin re case specific,	the Norweş 1g process. depending	gian North Sea Costs for on field specific
Cross media effects	Air		Ener	Energy to raise produced water pressure will increase air emissions.				
CHECKS	Energy		Ener	Energy to generate high pressure by condensate booster pump.				
	Added chemica Waste	ıls						
Other impacts	Safety		Recl	Reclassification of the produced water system to a hydrocarbon containing				
	Maintenance	Maintenance		The functional unit of the process is not mechanical. The maintenance				
Practical		Genera	1			Offsl	hore	
experience					There are 24 units installed in the Norwegian North Sea for the extraction of dissolved oil.			

State of Development	☑ Implemented Offshore☑ Used Offshore	Practical applicability:				
-	Offshore Field Trials	Driving force for implementation (e.g. legislation, increased yield,				
	Testing	improvement product quality):				
		Legislation and economic drivers caused by increased water cut				
		Example plants:				
		Successful testing at:				
		Statfjord B and C				
		Ekofisk 2/4J				
		Snorre A				
		Aasgard A				
		Troll C				
		Full-scale implementation at:				
		Statfjord A, 2000 m3/h				
		Statfjord B, 3000 m3/h				
		Statfjord C, 4300 m3/h				
		Snorre A, 1000 m3/h				
		Ekofisk 2/4J&M, 2000 m3/h				
Literature	(Voldum, et al, 2007) The CTour Proces	s, an option to comply with "zero harmful discharge legislation" in				
Course	Norwegian waters. Experience of CTour	installation on Ekofisk after start up 4'th quarter 2007. Kåre Voldum				
source	and Eimund Garpestad ConocoPhillips N	orway; Nils Olav Anderssen and Inge Brun Henriksen ScD ProPure,				
	Norway, SPE-118012-PP, Abu Dhabi In	ternational Petroleum Exhibition and Conference held in Abu Dhabi,				
	UAE, 3–6 November 2008.					
	(OSPAR, 2006) Addendum to the OSPA	R Background Document Concerning Techniques for the Management				
	of Produced Water from Offshore Installations (Publication number 162/2002)					

Table C - 14: In	Nessel Coalescence Technology for Improved	Performance of Deoiling Hydrocyclones			
Principle	 Cartridge assembly containing specialised coalescence media installed into either the inlet chamber of the Deoiling Hydrocyclone vessel or into a vessel located upstream of the PWT system. The inlet chamber of a conventional Deoiling Hydrocyclone can have a residence time of up to 20 seconds. This residence time is used constructively to achieve partial droplet coalescence while maintaining a high insensitivity to solids blocking. This is achieved by optimising a number of the technology design parameters including media material selection, media density, media surface treatment, flow regime and mechanical orientation. The resulting enhanced coalescence activity can boost the performance of the downstream deoiling hydrocyclones and reduce the oil in water concentration in the discharge stream by up to 80%. Installing this technology in the inlet chamber of a deoiling hydrocyclone vessel has many benefits: it allows flow velocities to be low (crucial for good coalescence) technology can be retrofitted without the requirement of any modification to plant or hot work Low risk and very cost effective to install (installation possible within one shift) 				
Process diagram					
	Oily water inlet Reject oil outlet Intervention of the second sec	Clean water outlet			
Basic elements	Cartridge housing typically constructed from 316L or Duplex Stainless Steel, containing support plates fitted with				
Suitable for the	Hydrocarbons	□ Other contaminants (specify)			
removal of:	Dispersed oil				
	Dissolved oil (partially)	See table at the bottom of the next page			
	Remarks:				

Technical details	Per Unit	Minimum Maximum				
	Treatment capacity (m3 produced water per hour)	Units can be designed for any capacity. Typical capacities are to 5 000 m3/h				
	Gross Package volume (LxWxH)	As the unit normally fits inside an existing vessel, there is no additional space required.				
	Operating weight	Weight typically ranges from 10 to 300 kg, depending on the size ounit				
	CAPEX (€)	CAPEX typically ranges from € 5 000 to €100 000 depending on t capacity				
	OPEX (€/year)	OPEX is normally nil				
	Cost per m ³ produced water(€/m ³)	Based on 4 years continuous operation, $\leq \varepsilon 0.01/m^3$				
Critical operational parameters	Temperature, droplet size, water den	sity, viscosity, wax content, solids content and type.				
Operational reliability, incl. information on downtime	On the basis that the unit is operated and maintained fully in accordance with the O & M Manual, then operational reliability has been found to be very high. Only minimal downtime is required to remove the cartridge from the Hydrocyclone vessel for cleaning, unless media is to be replaced.					
	Remarks:					
Cross media effects	Air	Not applicable				
	Energy	No energy input required				
	Added chemicals	The technology is structurally insensitive to typical oilfield chemical e.g. corrosion inhibitor, scale inhibitor, demulsifier although its performance improvement potential can be influenced by excessive addition of some corrosion and scale inhibitors since these chemicals can have a dramatic impact on the water chemistry (particularly interfacial tension).				
	Waste	The technology does not generate any specific waste				
Other impacts	Health and safety	None – Passive, no moving parts				
	Maintenance interval & availability (% per year)	It is recommended that the internals are inspected on an annual basis.				
		Availability > 99.8%				

Practical experience	General	Onshore / Offshore				
State of development	 Implemented offshore, commercial technology Used onshore Offshore field trials 	Practical applicability: The technology is a highly practical technology, suitable both for new facilities and for retrofits				
	□ Testing	Driving force for implementation (e.g. legislation, increased yield, improvement product quality):				
		OSPAR Legislation				
		Improved Hydrocyclone Performance				
		Operator stretch targets				
		Example plants:				
		Britannia, Bruce, Nelson, Draugen, Heidrun, Balmoral				
Literature	"Choosing Produced Water Treatment Technologies Based on Environmental Impact Reduction", SPE					
source	Paper 74002.					
	"Performance Enhanced Hydrocyclone Systems: Development & Field Experience", 7th IBC Production					
	Separation Systems, Oslo, 23 rd – 25 th May 2000.					
	"A Novel Pre-Coalescence Technology to Improve	Deoiling Hydrocyclone Efficiency"				
	3rd IBC Water Management Offshore, Stavanger, 2	0 th May 1999.				

	Suitable for		Removal Ef	ficiency (%)	Reference to source documentation	
		Oil	Gas	Oil	Gas	
		installations	installations	installations	installations	
Hydro	ocarbons					Field test reports.
-	Dispersed oil	\checkmark	\checkmark	Up to 99%	Up to 99%	Commissioning reports.
-	Dissolved oil	\checkmark	\checkmark	> 50%	> 50%	"Choosing Produced Water Treatment Technologies Based on Environmental Impact Reduction", SPE Paper 74002.
						"Performance Enhanced Hydrocyclone Systems: Development & Field Experience", 7 th IBC Production Separation Systems, Oslo, 23 rd – 25 th May 2000.
						" A Novel Pre-Coalescence Technology to Improve Deoiling Hydrocyclone Efficiency", 3 rd IBC Water Management Offshore, Stavanger, 20 th May 1999.
Specif compo	fic oil onents:	\checkmark	\checkmark	> 50%	> 50%	Whilst the technology is primarily designed to remove free oil droplets, reports (eg SPE paper 74002) show
-	BTEX	Unknown	Unknown	Unknown	Unknown	that BTEX's and PAH's often
-	NPD			> 50%	> 50%	into free oil droplets. Therefore, the
-	PAH's 16 EPA Others (indicate)					technology can reduce the total discharges of BTEX's and PAH's. The actual efficiency will depend on the chemistry of the application, which will vary widely from platform to platform.
						No work has been done on the effectiveness of the technology on NPD's.
Heavy	y metals	*	*	*	*	* Heavy metals will only be removed if they partition into the free oil phase.
Offsh	ore chemicals					* The technology is not affected by
-	methanol	*	*	*	*	of removal of these chemicals
-	glycol	*	*	*	*	depends on the extent to which they partition into the oil phase.
-	corrosion	*	*	*	*	-
	minibitors	*	*	*	*	
-	Diocides	*	*	*	*	
-	scale inhibitors	*	*	*	*	
-	surfactants	*	*	*	*	
-	others (indicate)					

Table C 15. Com	neat Electrican Unit (CEU) Semanation process				
Table C - 15. Colli	The CEU is a surficed encourse exceed execution of the form and used writer. The CEU is a surface of the form				
Principle	The CFU is a vertical pressure vessel separating oil and gas from produced water. The CFU is a compact unit with detention time down to 0.5 minute. Centrifugal forces (G-forces up to 10-20) and gas-flotation enhance the separation process. The produced water inlet is tangential on the CFU vessel. Oil droplets are coalesced into larger agglomerates during the transport through the vessel. The CFU has a compact design making it especially suitable for offshore installations where space is a limiting factor. The technology is flexible, and once optimised for site specific conditions, simple in operation. Several stages can easily be added in series or in parallel to improve treated quality, to account for changes in upstream facilities or to increase capacity according to the flexibility needed on site. Smaller units can be used to treat problematic fluids separately from the bulk fluid. The oil and gas together with a small amount of water is skimmed from the surface by a suspended pipe. The oil content in the reject varies from 10 to 50 %. Typically, the reject is approximately 1 % of the total flow. Treated water exits the vessels at the bottom outlet for discharge to sea, produced water re-injection or to further water treatment downstream. The reject is routed to the closed drain or to a separate treatment stage depending on local requirements. The effectiveness of flotation depends on the amount of residual gas present in the produced water. When limited or no gas is available in the system, the effectiveness of the flotation process is maintained by injecting additional gas (nitrogen or fuel gas) upstream of each CFU vessels. The amount of gas injected is $< 0.1 \text{ Sm}^3/\text{m}^3$ produced water per vessel. Normal operation pressure				
	will be from 0.5 barg and upwards. Flocculants will occasionally aid the effectiveness of the separation				
	process.				
Process diagram	Produced water Produced water Treated Water				
	Gas				
	Cii Ist Stage Separator Oii Flocculant Oil Hydrocyclone Degassing Tank Gas Water To Sea				
	Flow diagram example from Brage; CFU operating in parallell with the traditional NCS produced water treatment (hydrocyclones + degasser) To Reinjection				

Technical details	Treatment capacity $(m^3/h)^{1}$		Minimum 3 m^3/h	Maximum 2200 m ³ /h		
	Gross Package volume (LxWxH)		$35 \times 25 \times 2$	25 m^{2}		
	Onerating weight		Dry weight 6.5	$5/11 \text{ tons}^{(2)}$		
	CAPEX (€)		NOK 7 million (€ 900.0	(00) (Duplex steel) ³⁾		
	OPEX (€/vear)		Minimal: no maintenance	e. no energy required		
	Romarks.			,		
	1 Capacity mentioned is related to pro	oiects installe	ed or under installation			
	2. Figures on weight and footprint is h	based on CFU	I standard equipment 2xCFU22($(540 \text{ m}^3/\text{h}).$		
	3. CAPEX & OPEX is related to same	e standard eq	uipment			
Critical operational parameters	Oil droplet size, surfactants stabilising backflowed to the produced water syst	small oil dro tem, oil coate	oplets, gas in water, some well a ed solids	nd operational chemicals		
Operational reliability, incl. information on	100% reliable, no downtime, no maint or small bore openings. Large operation or scaling.	tenance on th	e technology equipment, no ope (down to 20% of design flow). 1	rators, no rotating parts Not vulnerable for solids		
downtime	<i>Remarks:</i> Regarded as proven technologiand others.	ogy by Norsl	k Hydro, Statoil, ConocoPhillips	s, Shell, ChevronTexaco		
Cross media effects	Air	No impact on air. Gas is returned to the oil system.				
	Energy	Low or no a 0.5 bar	Low or no additional energy needed. The pressure drop is down to 0.5 bar			
	Added chemicals	If needed ir	n general process (flocculant)			
	Waste	No waste generation. Oil and gas are normally returned to oil system				
Other impacts	Health and safety	No negative effects. If high benzene concentrations in produced water, special precautions needed during water sampling				
	Maintenance interval & availability (% per year)	Limited maintenance required for the CFU since solids are not accumulated in the system. Maintenance during normal shutdown periods.				
Practical experience	General	Onshore / Offshore				
State of development	 ✓ Implemented offshore (15) ✓ Offshore field trials (37) 	Practical ap Offshore / (The Compa the Norweg been furthe	plicability: Onshore Ict Flotation Unit (CFU) was firs gian Continental Shelf (NCS) in r developed, tested and installed	st installed offshore on 2001, and has since then on several installations.		
	Driving force for implementation (e.g.	. legislation,	increased capacity, improved wa	ater quality):		
	Legislation and economic drivers caus	sed by increa	sed water cut			

Literature source	Descousse, A., Mönig, K. and Voldum, K. (2004): Comparison of new and traditional produced water treatment technologies for their potential to remove dissolved aromatic components, 2nd Produced Water Workshop 21-22 April 2004, NEL East Kilbride, Glasgow
	Dolonen, O.S. (2004): Operational experiences at Snorre/Vigdis. Produced Water – Zero Discharge. Myth or Reality? Tekna 15-16 January 2004, Stavanger, Norway
	Hammerstad, T. and Rinde, S. (2004): New purification technology lowers discharges on Troll. Hydro, 5.07.2004. Presentation on OTC, Houston. <u>Http://www.hydro.com/cgi-bin/</u>
	Jahnsen, L. (2004): Epcon CFUs- a produced water treatment technology improving environment and efficiency of oil production, International Seminar on Oilfield Water Management, Rio, Brasil August 16 th – 18 th 4
	Jahnsen, L. (2005): Epcon CFU Technology: The alternative to traditional produced water treatment systems. Russian Arctic Offshore and CIS Continental Shelf, September 13-15, 2005, St.Petersburg, Russia
	Jahnsen, L. (2005): Epcon CFU Technology – A produced water treatment technology improving the environment and the efficiency of oil production, Iran Oil & Gas Show, April 14 th 2005
	Jahnsen, L. and Vik, E.A. (2003): Field Trials with Epcon Technology for Produced Water Treatment, Produced Water Workshop 26 th -27 th March 2003, NEL East Kilbride Glasgow
	Pollestad, A. (2005): The Troll Oil Case – Practical Approach Towards Zero Discharge. Tekna Produced Water Conference 18-19 January 2005, Tekna
	Vik, E. A. (2005): Environmental Risk Based Wastewater Treatment in the E&P Industry. Editorial Input to Business Briefing: Exploration & Production: The Oil & Gas Review
	Vik, E.A. and Bruås, L. (2005): Results of the Epcon CFU Zero Discharge Tests. Case studies 2001-2005. Aquateam Report no. 04-025. Version 2.
	Vik, E.A. and Engebretsen, S. (2005a): Documentation of Performance of the Epcon CFU Process. Case Studies Year 2001-2005. Aquateam Report No. 05-039
	Vik,E.A. and Dinning, A.J. (2005): Upscaling the Epcon CFU Technology. Comparison of test and full scale performance data from 2000-2005. Aquateam Report No. 05-057.
	Vik, E.A. and Engebretsen, S. (2005): Technology Assessment of Epcon CFU. Aquateam Report No.05-052.
	Vik, E.A., Folkvang, J., Jahnsen, L. and Oseroed, S.E. (2002): Improved Offshore Produced Water Treatment and Increased Technical Flexibility using the Epcon Compact Flotation Unit. Discussion of Case Studies from Norsk Hydro Brage and Troll C Platforms, 13 th International Oil Field Chemistry Symposium, Norwegian Society of Chartered Engineers.

	Suital	ole for	Removal Efficiency		Reference to source documentation
			(%	6)	
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					Applications have so far focussed on oil installations
- Dispersed oil	~		80-95		Removal efficiency depends on
- Dissolved oil			Low		starting point (Vik and Engebretsen, 2005 a)
Specific oil components:					$V_{\rm s}^{\rm th}$ and $D_{\rm m}^{\rm s}$ (2005)
- BTEX	\checkmark		40-80		BTEX removal is dependent on the
- NPD	\checkmark		45-60		gas rate used (stripping effect) and the cleanliness of the gas with respect
- PAH's 16 EPA	\checkmark		60-85		to BTEX. Removal efficiency of
- Naphthalenes	\checkmark		40-60		starting level in the water
- C6-C9 phenols	\checkmark		40-60		
Heavy metals					Not measured
Offshore chemicals					Not measured but expected to have
- methanol					same removal efficiency for
- glycol					removing oil soluble chemicals as for removing dispersed oil, but reduced
- corrosion inhibitors					efficiency for removing water soluble chemicals. Efficiency is related to
- biocides					degree of water solubility.
- scale inhibitors					
- surfactants					
- others (indicate)					

Table C - 16: Conde	ensate induced extraction				
Principle	Condensate induced extraction is based on extraction of hydrocarbons from produced water, using condensate (NGL) from a suction scrubber in the production stream. Condensate (NGL) is injected and mixed with the produced water stream, by means of a special designed injection & mixing system. The condensate acts as a solvent, i.e. extracts the water soluble aromatic components from the water into the condensate phase. The condensate and the oil particles coalesces into larger, low-density droplets that are efficiently separated from the produced water by the downstream separation unit (i.e. hydrocyclone, compact flotation unit or similar). The condensate requirement for a given removal efficiency is proportional to feed Oil-in-Water concentration into the condensate induced extraction process.				
Process diagram	High Pressure Separator	rs G Low Prr Sepa	as Cooler Sesure To Oil Export PW Pump VGL Injection Purr	To Gas Compressors Suction Scrubber	
Basic elements	Condensate, injection & mixing syste	em			
Suitable for the removal of:	Hydrocarbons √ Dispersed oil √ Dissolved oil		□ Other contamin Production chemic Log (octanol/wate: See table at the be	ants (specify) cals with r partition) greater than 2.0. ottom of the next page	
	<i>Remarks:</i> For dissolved oil: the technique is sui	table for the re	moval of dissolved	aromatic hydrocarbons	
Technical details	Per Unit (typical)*	Mi	nimum	Maximum	
	Treatment capacity (m3 produced water per hour)		10	500	
	Gross Package volume, LxWxH, m Operating weight, tons	3 x 1.5 x 2 10 x 2 x 3		10 x 2 x 3	
	CAPEX (€)	3 13 0,5 million 1,5 million			
	OPEX (€/year)				
	Cost per m3 produced water($\epsilon/m3$)				
Critical operational	Produced water pressure must be su	fficiently high	to keep the conde	ensate in the liquid phase during the	
parameters	separation process. If the operating	g pressure doe	es not match the processing might be	bhase properties of the condensate, required. This can be done without	
	compromising the extraction process efficiency.				

Operational reliability, incl. information on downtime	The condensate induced extraction p specifications and with a reasonable	rocess is highly relial sparing philosophy.	ble, presumed operating within the design	
	<i>Remarks:</i> Costs for retrofit implementation of on field specific conditions and the t	the condensate induc arget removal efficier	ced extraction process are case specific, depending ncy.	
Cross media effects	Air			
	Energy	Energy for pumpin	g (and potentially condensate processing)	
	Added chemicals	none		
	Waste	none		
Other impacts	Health and safety	Reclassification of containing system.	the produced water system to a hydrocarbon	
	Maintenance interval & availability (% per year)			
Practical experience	General		Onshore / Offshore	
			On and Offshore	
State of development	✓ Implemented offshore		Practical applicability:	
	 ✓ Used onshore ✓ Offshore field trials 		This can be done without compromising the extraction process efficiency.	
	✓ Testing		Driving force for implementation (e.g. legislation, increased yield, improvement product quality):	
			Legislation and economic drivers caused by increased water cut	
		ľ	Example plants:	
			Successful testing at:	
			Statfjord B and C	
			Ekofisk 2/4J	
			Snorre A	
			Troll C	
			Statford A 2000 m3/h	
			Statfjord B, 3000 m3/h	
			Statfjord C, 4300 m3/h	
			Snorre A, 1000 m3/h	
			Ekofisk 2/4J&M, 2000 m3/h	
Literature				
source				

	Suitable for		Removal Efficiency		Reference to source documentation
			(%)		
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil	\checkmark	\checkmark	95	95	
- Dissolved oil	\checkmark	\checkmark	95	95	
Specific oil components:					
- BTEX			90 (*)	80 (*)	
- NPD			90	90	
- PAH's 16 EPA			95	95	
- Others (indicate)					
Heavy metals					
Offshore chemicals					
- methanol					
- glycol					
- corrosion inhibitors	\checkmark	\checkmark	40 (**)	40 (**)	
- biocides					
- scale inhibitors					
- surfactants					
- others (indicate)			80 (***)	80 (***)	

Removal efficiency is referenced to a standard hydrocyclone discharge of 20 ppm. (*) Removal efficiency depending on BTEX content of condensate. (**) Specific class of corrosion inhibitors. (***) Log (octanol/water partition) greater than 2.0.

Table C - 17: Tail sl	naped pre-coalescer					
Principle	In a tail shaped pre-coalescer, fluid enters the coalescer housing via an axial inlet nozzle, and then is forced to flow along the housing in the same longitudinal direction as the fibrous coalescer bundle. As fluid travels along the oleophilic fibres, small oil droplets are retained on the surface of the fibres. The droplets coalesce with other droplets on the fibre surface, and therefore grow as they migrate along bundle towards the outlet. Fluid drag increases as the droplet diameter grows, and eventually larger droplets are released at the end of the bundle. It is important to note that there is no phase separation in the coalescer. All the inlet fluid leaves through a common outlet, but the outlet mean droplet size is considerably enhanced, leading to easy gravity separation downstream. The coalescing action occurs within two seconds in the bundle, making a very compact device. The combination of flow along the fibres, rather than across as conventional coalescers, and relatively high fluid velocities, mean that solids are generally passed straight through the coalescer, and					
Process diagram	FIGURE 1	<u> </u>				
Basic elements						
Suitable for the	Hydrocarbons		□ Other contam	inants (specify)		
removal of:	✓ Dispersed oil					
	✓ Dissolved oil		See table at the b	oottom of the next page		
	<i>Remarks:</i> The technology itself, does equipment (such as hydrocyclones) b Hence the name pre-coalescer. Use o practice that both dispersed and disso be enhanced.	s not actually re by coalescing th f the technolog olved (naphthale	move oil but impre e oil droplets and r y upstream of hydr enes, 2-4 ring PAF	oves the performance of downstream making them easier to separate. rocyclones has been shown in I and C6-C9 phenols) oil removal can		
Technical details	Per Unit	Mii	nimum	Maximum		
	Treatment capacity (m3 produced water per hour)	Lower limit is typically 5 m3/hr for a 2" diameter unit unit)				
	Gross Package volume (LX w XH)	Approx 2.2 x V	0.07 X 0.2 M	Approx 5.5 x 0.5 x 1.0 m		
	Operating weight	Approx 30 kg		Approx 1500 kg		
	CAPEX (€)	Approx €15,0	Approx \notin 15,000 (duplex)Approx \notin 90,000 (duplex)			
		Unknown – insufficient Unknown – insufficient operating data data				
	OPEX (€/year)	operating data	sument	data		
	OPEX (€/year) Cost per m3 produced water(€/m3)	operating data	sumerent	data		

Operational reliability, incl. information on downtime	Yet to be fully established as number of full scale units in service is limited. Field tests have shown that pilot scale units can operate reliably for 3 months or more before the media requires changing. Media changeout takes only a short time, after which the unit can be brought back in service. The technology is not recommended in applications where wax dropout occurs or where naphthanates are present in the produced water.				
	Remarks:				
Cross media effects	Air				
	Energy				
	Added chemicals	ded chemicalsCertain oilfield chemicals should not injected upstream of the technology. In particular, deoilers injected upstream will have a detrimental effect on the coalescing performance, as the media strands can stick together as a result of chemical action.			
	Waste				

Other impacts	Health and safety	Disposal of oil wetted media needs to be considered. This can be packed into specially designed shipment containers for return to shore.			
	Maintenance interval & availability (% per year)	Pressure drop should be checked daily. Operational availability should be > 95%.			
Practical experience	General	•	Onshore / Offshore		
State of development	 ✓ Implemented offshore □ Used onshore ✓ Offshore field trials ✓ Testing 		Practical applicability: Applicable for both offshore and onshore applications. Easy to install. Driving force for implementation (e.g. legislation, increased yield, improvement product quality): Legislation, improvement in discharges to sea (reduction in oil discharged) Example plants: Shell Pierce field (recently installed), offshore Brazil		
Literature source					

	Suitable for		Removal Efficiency		Reference to source documentation
			(%)		
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil	\checkmark	\checkmark	n.i.	n.i.	
- Dissolved oil	\checkmark	\checkmark	n.i.	n.i.	

Remark: The tail shaped pre-coalescer technology only promotes oil droplet growth and does not remove the oil in itself. Offshore trials have demonstrated that the use of the technology upstream can lead to significantly enhanced dispersed oil and dissolved oil removal. Oil droplet growth can be typically 400% growth in the median oil droplet size.

Specific	c oil components:				
-	BTEX	n.i.	n.i.	n.i.	n.i.
-	NPD	n.i.	n.i.	n.i.	n.i.
-	PAH's 16 EPA	n.i.	n.i.	n.i.	n.i.
-	Others (indicate)	n.i.	n.i.	n.i.	n.i.

Remark: Offshore analysis has shown that the use of the technology upstream of hydrocyclones has resulted in an improvement in the removal of both dispersed and dissolved (naphthalenes, 2-4 ring PAH and C6-C9 phenols) oil removal.

Heavy metals			
Offshore chemicals			
- methanol			
- glycol			
- corrosion inhibitors			
- biocides			
- scale inhibitors			
- surfactants			
- others (indicate)			

Table C - 18: Advar	nced Oxidation Process	
Principle	All AOP systems degrade organic species by utilis degradation of the organics to carbon dioxide, wa developed AOP method currently available to indu to happen by one of the following processes:	ing the powerful hydroxyl radical (OH ^{\circ}). This results in ter and inorganic salts. The UV/O ₃ process is the best stry. The generation of the hydroxyl radicals is thought
	$O_3 \xrightarrow{hv} O_2 + O_2$	· (1)
	$O_3 + H_2O \xrightarrow{h_0} H_2O_2$	$+ O_2$ (3)
	$H_2O_2 \xrightarrow{hv} 2OH$	(4)
	With the production of the Hydroxyl radicals, inter of reaction mechanisms of which the most likely to	action with an organic substrate can occur by a number occur is the Hydrogen abstraction process:
	OH [·] + RH R [·] +	H ₂ O (5)
	On completion of this reaction an organic radica reactions that will eventually lead to the complete n	al is produced (R [•]) which will start a series of chain inieralisation of the organic molecule.
	Ozone may be injected into the waste-water stream the water to form hydroxyl radicals but this process Following injection of ozone, the water is passed th quartz glass. This is the essence of the process.	as part of an airstream. The ozone starts to react with is enhanced in the presence of Ultraviolet light. rough a vessel containing Ultraviolet lamps, encased in
Process diagram	INLET WASTEWATER FLOW Produced water Cooling water BOD & COD enriched waters Sour water & H7S	AIR DRYER AIR DEW POINT COOLING WATER OUTLET WATER FLOW • Oxidation of organic material • Reduced COD & BOD • Removal of dispersed and dissolved
Basic elements	Ozone injection and UV vessel	
Suitable for the	Hydrocarbons	✓ Other contaminants (specify)
removal of:	✓ Dispersed oil	
	✓ Dissolved oil	See table at the bottom of the next page
	Remarks:	

T	D II.'	M: :	M. '			
Technical details	Per Unit	Minimum	Maximum			
	Treatment capacity (m3 produced water per hour) Gross Package volume (LxWxH) Operating weight CAPEX (€) OPEX (€) OPEX (€/year) Cost per m3 produced water(€/m3)	No minimum, nominally $2M^{3}$ /hour 2 x 1.5 x 2 3000 Kg 400,000 40,000 25 (in first year – 2.28 thereafter)	No Maximum – Built up in units of 70 – 350M ³ /hour 3.5 x 1.5 x 2 5000 Kg 750,000 75,000 0.27 (in first year – 0.024/year thereafter))			
Critical operational parameters	Requires dry air, cooling water that i	that is chloride free, and electrical power				
Operational reliability, incl. information on downtime	There should be little or no downtim fails, water will still flow through it.	time as there is little in the way of moving parts in the kit. If the system it.				
	Remarks:					
Cross media effects	Air	None				
	Energy	Requires 23 kW for 66 m ³ /h unit				
	Added chemicals	None				
	Waste	None				

Other impacts	Health and safety	Ozone is toxic and operators must not be exposed to this gas Maintenance interval: Estimated at between 1- 6 months Availability: 95%+		
	Maintenance interval & availability (% per year)			
Practical experience	General	Onshore / Offshore		
State of development	 □ Implemented offshore □ Used onshore ✓ Offshore field trials □ Testing 	Practical applicability: Driving force for implementation (e.g. le increased yield, improvement product qu	gislation, ality):	
		Example plants:		
Literature source	"A Practical Method for the Reducti Advanced Oxidation Process", Sned	on of Hydrocarbon Concentration in Produced Water using an don et al, GPA, Bergen, 13 th May 2002.		

	Suitable for		Removal Efficiency		Reference to source documentation
			(Typical %)		
	Oil	Gas	Oil	Gas	
	installations	installations	installations	installations	
Hydrocarbons					
- Dispersed oil	~	\checkmark	50	75	
- Dissolved oil	~	\checkmark	50	75	
Specific oil components:					
- BTEX	~	\checkmark	50	75	
- NPD	✓	\checkmark	50	75	
- PAH's 16 EPA	~	\checkmark	50	75	
- Others (indicate)	~	~	[□]	[75]	
Heavy metals					
Offshore chemicals					
- methanol	~	\checkmark	50	75	
- glycol	~	\checkmark	50	75	
- corrosion inhibitors	✓	\checkmark	50	75	
- biocides	✓	\checkmark	50	75	
- scale inhibitors	~	~	50	75	
- surfactants	~	~	50	75	
- others (indicate)	~	~	50	75	

Table C - 19	e C - 19 : Screen (Cartridge Type) Coalescing Technique								
Principle	Screen (Cartridge Type) coalescing units facilitate separation of water and dispersed oil by a combination of adsorption, viscosity difference and gravity separation. Water & dispersed oil is passed through a cartridge of media under pressure differential. The media properties will temporarily adsorb oil to its surface and the viscosity difference between water and oil as they flow through the medias pores will encourage oil droplets to grow before being released to float to the surface of the unit. Media which becomes inactive or fouled can either be replaces or regenerated. One model of the process uses a back flow arrangement which utilises the oil to remove fouling from the media.								
Process Diagram	From Upstream Primary Separator Main Pump Solids Treatment Unit Unit The basic elements consist of an untreated water feed pump, two housing vessels (usually in series) containing one								
Basic Elements	The basic elements consist of an untreated water feed pump, two housing vessels (usually in series) containing one or more media cartridges. Associated oil recovery equipment may required; oil separator/water								
Suitable for the removal of:	Heavy Metals Heavy Metals Cadmium zinc equivalents Lead Mercury Nickel	R[%]	Production Chemica Methanol Glycols Corrosion Inh Anti-scale So Demulsifiers chnology that can accept ar e emulsified hydrocarbons ting tight oil emulsions cau	ls R[%] hibitors lutions ad coalesce disposes. These systems used by the addit	Dispersed will not rer ion of certai	Oil Dissolved O BTEX Benzene PAHs d Oil Dil Dil pplets as sma nove dissolv	R[%] R[%] R[%] * all as red oils.		
Technical Details	Type of Installation Produced Water Volume (design)				Gas 1	Gas 2	Oil 1		
	Mass of equipment for water	treatment	installation						
Critical Operational Parameters	The oil being treated must be performance deterioration. The progressive cavity pump.	immiscib ne feed pu	le in water. A pre-filter mus mp used should be of a type	st be used to pre e to avoid emuls	vent media ifying the s	fouling and olution, e.g.			
Operational Reliability	The majority of these units w require these to be changed o	ill need a j ut frequen	pre-filtration stage and the tly.	presence of solid	ls in the pro	duced water	r could		

Indication of									
Costs	Costs	Investr	nent Cos	sts (CA	PEX)	E	xploitation Co	osts (OPEX)	
			[€]				[€/Yea	ar]	
		Present	t	1	New	Present	New		
	Gas Platform, small								
	Gas Platform, large								
	Oil Platform								
	Cost/kg removed	Gas Platform, small Gas Plat			form, large	(Dil Platform		
		Existing New		w	Existing	New	Existing	New	
	Dissolved oil	[€/kg] [€/kg		g	[€/kg]	[€/Kg]	[€/kg]	[€/Kg]	
	Dispersed oil								
	Zinc equivalents								
	Remarks:	•							
Cross Media Effects	Air								
	Energy	Energy to ru	in the fee	ed pum	р				
	Added Chemicals	-							
	Waste	Spent media	a cartridg	ges					
Other Impacts	Safety								
Prostical	Maintenance	Replacemen	t of spen	t media	a cartridges	and inspection	of cartridges.		
Experience	Ger	neral				0	ffshore		
State of Development	Implement ⊠ Used Offs ⊠ Offshore I	ted Offshore hore Field Trials		Pract There polis	ical applicat e are exampl hing produce	oility: les of this techn ed water applic	ology used of ations	fshore for well test and	
	Testing			Drivi impro	ing force for ovement pro	implementatio duct quality):	n (e.g. legislat	ion, increased yield,	
		Example plants: Accurate (June 2009): Various, Brazil, West Africa, Middle H						Africa, Middle East.	
Literature Source	(TORR, A) TORR I (TORR, 2009) TOR (SEPRATECH, 200	De-oiling techr R Produced W 7) Separatech	ology ov ater Trea COP FA	verview atment Q Doc	v document, Experience ument, <u>www</u>	www.prosep.cd List, June 2009 Asseptatech.con	om 9, www.prosep 1/copsystem, 2	0.com 2007	

Table C - 20 : Twind	Zapp						
Principle	Oxidation / Filtration The presence of corrosion inhibitors and foam l combination of technologies	ift can cause very stable emulsions. The solution is a					
	- electrical oxidation (Elox)						
	- separation / initiation (1101a)						
	Electrical oxidation cells consist of multiple pairs arranged so that the water to be treated flows throug applied across the plates.	of metal electrodes separated by a few millimeters and gh the plates at a moderate rate, a direct current voltage is					
	Release of reactive oxygen, hydroxyl and other radi	cals destabilize the present surface-active components.					
	The bulk of the solids as well as free oil created in the	ne Elox is separated with a standard separator.					
	The usually abundant neutrally buoyant particles (a to finally reduce TSS along with associated oil ppm Fibra Cartridge Filter).	s a percentage of TSS) requires the use of the Fibra filter in the polishing step of the process. (pls refer to BAT on					
	Along with the free oil, the process addresses the presence of BTEX as well. Test results on p from the last skimmer of a Southern North Sea platform reduced free oil from ca. 500 to 3 p from 50 to 6 ppm. Similar field tests verified reductions of this order of magnitude on produce as slop water.						
Process diagram	TwinZapp technology is a two-step approach to rem water. Emulsions are destabilised using an electro-ousing a coalescing filter. Oxidative Destabilized Flust Coalescing Treatment Set Destabilized Flust Coalescing 5 Neither step makes use of consumables; the patentee useful for unmanned installations. The required energy setup employs both steps in a serial setup operating information is available on www.brilliantwater.org	avidation process. The contaminants are then removed avidation process. The contaminants are then removed and Filter d coalescer is fully re-generable, making this technique 'gy input is low at around 0.5 kW / m3. The simplest on the last atmospheric skimmer tank. More detailed					
Basic elements	Electro-oxidation followed by coalescing / filtration						
Suitable for the removal of:	Hydrocarbons √ Dispersed oil √ Dissolved oil	 ✓ Other contaminants (specify) BTEX, PAH's, surfactants, corrosion inhibitors 					
	Remarks:						

	1					
Technical details	Per Unit	Minimum		Maximum		
	Treatment capacity (m3 produced water per hour)	1-5		NA		
	Gross Package volume (LxWxH)	1.5 x 4.0 x 1.5 (esti-	mated)			
	Operating weight	2.5 tonnes (estimate	ed)			
	CAPEX (€)	None (rental)				
	OPEX (€/year)	300k EU / yr				
	Cost per m3 produced water(€/m3)	0.1 Eu / m3				
Critical operational parameters	Atmospheric conditions are required	for a standard design	n unit.			
Operational reliability, incl. information on downtime	First unit will be in service as of Apr for service shorter than an estimated	il 2012. The longest 3-6 month interval.	field trial of	30 days has not indicated a requirement		
	Remarks:					
Cross media effects	Air	50Nm3/hr				
	Energy	0.5 kW / m3 electric	cal energy			
	Added chemicals	None				
	Waste	< 1% effluent to be disposed				
Other impacts	Health and safety	None, ATEX certified				
	Maintenance interval & availability (% per year)	& (see earlier) > 3 months estimated interval, 12 hours downtime per interval.				
Practical experience	General			Onshore / Offshore		
State of development	 ☐ Implemented offshore ☐ Used onshore √ Offshore field trials 		Practical a this suita installation water treatr	pplicability : lack of consumables make ble for all manned / unmanned s without additional POB. Including slop nent systems.		
	□ Testing		Driving legislation, product qu	force for implementation (e.g. increased yield, improvement iality):		
			Improved v OSPAR dis	water quality to far below 30 ppm free oil scharge limits		
			No chemica	als required.		
			Example pl	ants:		
Literature source						
	Suitable for	Removal Eff	iciency	Reference to source documentation		
		(%)				

		Oil	Gas	Oil	Gas	
		installations	installations	installations	installations	
Hydr	ocarbons					
-	Dispersed oil	\checkmark	\checkmark	95	95	
-	Dissolved oil	\checkmark	\checkmark	60	60	
Specificompo	fic oil onents: BTEX NPD PAH's 16 EPA Others (indicate)					
Heavy	y metals					
Offsh	ore chemicals					
-	methanol					
-	glycol					
-	corrosion inhibitors					
-	biocides					
-	scale inhibitors					
-	surfactants					
-	others (indicate)					

Table C - 21 : Fibra	Cartridge
Principle	Filtration/ Coalescing
Tincipic	A filtration/coalescing technology based on the use of a bundle of fibre filaments placed in a cartridge (2 inch
	pipe). A special design of the element allows backwashing of the element.
	• Developed in a JV between Shell, Brilliant Water Investments and Twin Filter.
	Patented technology.
	• No use of consumables, the patented Fibra Cartridge is fully re-generable, making this technique useful for unmanned installations.
	• The filter bed is formed from a bundle of fine fibres, potted at one end.
	• The bundle is mounted vertically in a vessel, and compressed quite close to the free end to form a fine filtration bed.
	• <u>Compression is achieved by the flow of the liquid to be filtered.</u>
	• Feed enters the filter vessel and flows through the bed to provide a clarified filtrate downstream of the
	compression point. The high physical removal means that where chemicals were traditionally used they
	may be unnecessary or greatly reduced, providing a lower cost, environmentally more acceptable
Duococc	Dead an death filmsting and effecting for high dist loads
r 1 ocess	• Based on deput initiation and effective for high dift loads
	• An automatic flush technique arrows the fibers to be cleaned simply in a matter of seconds using the filter liquid itself, without interruption of the process
	Additional vibration shocks further clean the fibres
	Minimal flush-loss
	Can be combined with existing compressed air
	External back flush pump not necessary
	• Removal of > 90% of particles above 3 μm
	Open system, can be combined with UV for disinfection
	• No need for consumables (Low OPEX)
	• Compact: Single vessel of ø 600 mm allows up to 5-7 m3/hour
	Low maintenance
	Modular set-up
	Fully automatic with PLC controller
	Filtration / Coalescing
	• Feed enters the filter vessel and permeates the bundle, flowing through the bed to provide clarified filtrate downstream of the compression point.
	• The fibre density at the entry is relatively low, becoming progressively tighter towards the compression point, thus providing an effective gradation of pore size. This ensures that reasonably high solids loadings can be dealt with.
	Flushing
	• When the cartridge element is getting plugged, which is detected through the pressure difference over
	the cartridges, an air purge forces a strong and very short (1-2 seconds) back flushing, providing recoveries of at least 95%.
	• Efficiency of the fibrous bed is high providing typical removals > 90% for
	particles above 3 μ m. This means that the particulate removal capability is an order of magnitude finer than a granular media filter, and positions the technology between conventional filtration and membrane filtration.
	More detailed information is available on www.twinfibra.com

Suitable for the removal of: Hydrocarbons J Dispersed oil Solids Remarks: Remarks: Remarks: Technical details Per Unit Minimum Maximum Treatment capacity (m3 produced water per hour) 0,1 20 Gross Package volume (LsWxH) 0,2 x 0,2 x 0,6 0,8 x 0,8 x 1,0 Operating weight 20 kg 150 kg CAPEX (C) OPEX (Cyear) Cost per m3 produced water(C/m3) 150 kg Operational produced mater(C/m3) First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Indicated a requireme for service shorter than an estimated 3 month interval. Information on downtime Remarks: <1 Nm3/hr Cross media effects Air <1 Nm3/hr Maste <1 Nm3/hr Maste <1 % offluent to be disposed Other impacts Health and safety None Maintenance interval availability (% per year) & 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required.	Basic elements	Normal Filter laid out for use with no	Normal Filter laid out for use with normal filter cartridges.							
Image: Constraint of the service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Critical operational parameters: Arm conspheric conditions are required for a standard design unit. Operational rediability, inclustry, inclus	Suitable for the removal of:	Hydrocarbons √ Dispersed oil Solids √ (oil contaminated) Solids								
Technical details Per Unit Minimum Maximum Treatment capacity (m3 produced water per hour) 0,1 20 Gross Package volume (LxWxH) 0,2 x 0,2 x 0,6 0,8 x 0,8 x 1,0 Operating weight 20 kg 150 kg CAPEX (€) 0PEX (€/year) 20 kg OPEX (€/year) Cost per m3 produced water(€/m3) 150 kg Cross media effects First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Maintemactes None Waste <1% effluent to be disposed Other impacts Health and safety None Maintenance interval availability (% per year) & 6-12 months estimated interval. 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore √ Offshore field trials Practical applicability: • Sea water re-injection (Oil&Gas)		Remarks:								
Treatment capacity (m3 produced water per hour) 0,1 20 Gross Package volume (LxWxH) 0,2 x 0,2 x 0,6 0,8 x 0,8 x 1,0 Operating weight 20 kg 150 kg CAPEX (€) 0PEX (€/year) 150 kg OPEX (€/year) Cost per m3 produced water(€/m3) 150 kg Critical operational parameters Atmospheric conditions are required for a standard design unit. 150 kg Operational reliability, incl. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requirement for service shorter than an estimated 3 month interval. 100 kg km/s km/s km/s km/s km/s km/s km/s km/s	Technical details	Per Unit	Minimu	ım	Maximum					
Gross Package volume (LxWxH) 0,2 x 0,2 x 0,6 0,8 x 0,8 x 1,0 Operating weight 20 kg 150 kg CAPEX (€) 0PEX (€/year) 150 kg OPEX (€/year) Cost per m3 produced water(€/m3) 150 kg Critical operational parameters Atmospheric conditions are required for a standard design unit. 150 kg Operational reliability, incl. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Added chemicals None Remarks: Cross media effects Air Maintenance interval availability (% per year) & 6-12 months estimated interval. 1-2 hours downtime per interval. availability (% per year) Waste 6-12 months estimated interval. 1-2 hours downtime per interval. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore Practical applicability:		Treatment capacity (m3 produced water per hour)	0,1		20					
Operating weight CAPEX (€) 20 kg 150 kg OPEX (€/year) 0PEX (€/year) 150 kg Cost per m3 produced water(€/m3) 0 150 kg Critical operational parameters Atmospheric conditions are required for a standard design unit. 150 kg Operational reliability, incl, information downtime Atmospheric conditions are required for a standard design unit. 150 kg Remarks: First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requirement for service shorter than an estimated 3 month interval. 160 kg Cross media effects Air Added chemicals None Waste <1 M s/hr Kaite of development Maintenance availability (% per year) 6-12 months estimated interval, 1-2 hours downtime per interval, relive changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore √ Offshore field trials Practical applicability: • Sea water re-injection (Oil&Gas)		Gross Package volume (LxWxH)	0,2 x 0,2 x	x 0,6	0,8 x 0,8 x 1,0					
CAPEX (€) OPEX (€/year) Cost per m3 produced water(€/m3) 1.50 kg Critical operational parameters Atmospheric conditions are required for a standard design unit. Operational reliability, incl. Parameters First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Remarks: Cross media effects Air Energy <0.05 kW/m3, required to push liquid through filter Added chemicals None Waste Vaste <1% effluent to be disposed Other impacts Health and safety None Maintenance interval availability (% per year) & 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience State of development √ Implemented offshore √ Offshore field trials		Operating weight	20 ka		150 kg					
OPEX (€/year) Cost per m3 produced water(€/m3) Critical operational parameters Atmospheric conditions are required for a standard design unit. Operational reliability, incl. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Cross media effects Air <1 Nm3/hr Energy <0,05 kW/m3, required to push liquid through filter Added chemicals None Waste <1% offluent to be disposed Other impacts Health and safety Maintenance interval availability (% per year) 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √Implemented offshore Practical applicability: • Sea water re-injection (Oil&Gas)		CAPEX (€)	20 Kg		150 Kg					
Cost per m3 produced water(€/m3) Implemented offshore Critical operational parameters Atmospheric conditions are required for a standard design unit. Operational reliability, incl. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requirement for service shorter than an estimated 3 month interval. Cross media effects Remarks: Air <1 Nm3/hr Energy <0,05 kW/m3, required to push liquid through filter Added chemicals None Waste <1% effluent to be disposed Other impacts Health and safety Maintenance interval availability (% per year) & 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge charges greatly reduced. Causing less waste! Filter cartridge charges greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore √ Offshore field trials Practical applicability:		OPEX (€/year)								
Critical operational parameters Atmospheric conditions are required for a standard design unit. Operational reliability, incl. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requirement for service shorter than an estimated 3 month interval. Cross media effects Air <1 Nm3/hr Energy <0.05 kW/m3, required to push liquid through filter Added chemicals None Waste <1% effluent to be disposed Other impacts Health and safety None Maintenance interval availability (% per year) 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development $$ Implemented offshore $$ Offshore field trials Practical applicability: • Sea water re-injection (Oil&Gas)		Cost per m3 produced water(€/m3)								
Operational reliability, incl. information on downtime First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requireme for service shorter than an estimated 3 month interval. Imformation on downtime Remarks: Cross media effects Air Added chemicals None Waste <1 Nm3/hr Other impacts Health and safety None None Maintenance interval availability (% per year) & 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore √ Offshore field trials Practical applicability: • Sea water re-injection (Oil&Gas)	Critical operational parameters	Atmospheric conditions are required for a standard design unit.								
Remarks: Cross media effects Air <1 Nm3/hr Energy <0,05 kW/m3, required to push liquid through filter Added chemicals None Waste <1% effluent to be disposed Other impacts Health and safety Maintenance interval availability (% per year) & 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development $$ Implemented offshore $\sqrt{$ Offshore field trials Practical applicability: • Sea water re-injection (Oil&Gas)	Operational reliability, incl. information on downtime	First unit will be in service as of April 2012. The longest field trial of 30 days has not indicated a requirement for service shorter than an estimated 3 month interval.								
Cross media effects Air <1 Nm3/hr		Remarks:								
Energy <0,05 kW/m3, required to push liquid through filter Added chemicals None Waste <1% effluent to be disposed Other impacts Health and safety Maintenance interval availability (% per year) 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore Practical applicability: • Sea water re-injection (Oil&Gas)	Cross media effects	Air	<1 Nm3/hr							
Added chemicals None Waste < 1% effluent to be disposed		Energy	<0,05 kW/m3, req	uired to push l	ired to push liquid through filter					
Waste < 1% effluent to be disposed Other impacts Health and safety None Maintenance interval availability (% per year) 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore Practical applicability: • Sea water re-injection (Oil&Gas)		Added chemicals	None							
Other impacts Health and safety None Maintenance interval availability (% per year) & 6-12 months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development √ Implemented offshore Practical applicability: √ Offshore field trials Sea water re-injection (Oil&Gas)		Waste	< 1% effluent to be	e disposed						
Maintenance availability (% per year)& $6-12$ months estimated interval, 1-2 hours downtime per interval. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste!Practical experienceGeneralOnshore / OffshoreState of development $$ Implemented offshore $\sqrt{$ Offshore field trialsPractical applicability: • Sea water re-injection (Oil&Gas) • Sea water re-injection (Oil&Gas)	Other impacts	Health and safety	None							
availability (% per year) Reduced attention required. Reduced attention required. Filter cartridge changes greatly reduced. Causing less waste! Practical experience General Onshore / Offshore State of development $$ Implemented offshore Practical applicability: $\sqrt{$ Offshore field trials Sea water re-injection (Oil&Gas)		Maintenance interval &	6-12 months estim	nated interval,	1-2 hours downtime per interval.					
Practical experience General Onshore / Offshore State of development $$ Implemented offshore Practical applicability: $\sqrt{$ Offshore field trials • Sea water re-injection (Oil&Gas)		avanability (76 per year)	Reduced attention Filter cartridge cha	required. anges greatly r	educed. Causing less waste!					
State of development √ Implemented offshore Practical applicability: √ Offshore field trials • Sea water re-injection (Oil&Gas)	Practical experience	General			Onshore / Offshore					
State of development $\sqrt{\text{Implemented offshore}}$ Practical applicability: $\sqrt{\text{Offshore field trials}}$ • Sea water re-injection (Oil&Gas)	State of dovelopment									
 ✓ Onshore trials Completion Fluid Filtration (Oil&Gas) Reversed Osmosis pre-filtration Replacement of Nominal filter cartridg down to 1 micron, especially on unmann platforms and remote locations, Sand Filter Multi media filters and DE filters with a without body feed. 	State of development	 ✓ Implemented offshore ✓ Offshore field trials ✓ Onshore trials 		 Fractical applicability: Sea water re-injection (Oil&Gas) Completion Fluid Filtration (Oil&Gas) Reversed Osmosis pre-filtration Replacement of Nominal filter cartridge down to 1 micron , especially on unmanner platforms and remote locations, Sand Filter Multi media filters and DE filters with an without body feed 						

				Driving legislation, product qu • Reduc • Potent solids • Soluti- treatm (coale • Example pl	 Driving force for implementation (e.g. legislation, increased yield, improvement product quality): Reduced waste caused by used filter elements Potential to use as a coalescing element on solids and oil contaminated waters Solutions for improving produced water treatment system for polymer flooding (coalescing element!) Example plants: 			
Literature source								
	Suitable fo	r	Removal 1 (9	Efficiency 6)	Reference to source documentation			
	Oil	Gas	Oil	Gas				
Hydrocarbons - Dispersed oil - Dissolved oil Specific oil components: - BTEX - NPD - PAH's 16 EPA - Others (indicate)	installations √	√	>95	>95	Depending on droplet size distribution.			
Heavy metals								
Offshore chemicals - methanol - glycol - corrosion inhibitors - biocides - scale inhibitors - surfactants - others (indicate)								

Table C - 22	2 : Pertraction							
Principle	Pertraction involves extracting organic substances such as aromatics or chlorinated hydrocarbons from process water through a membrane; pollutants from process water dissolve into an organic extractant through the membrane. The membrane prevents mixing of the two phases; therefore, no separation of water and extractant is necessary. The membrane allows for independent control of both phase flows for relatively easy process optimisation. Pertraction installations can be considered a flexible and compact alternative to conventional techniques like air stripping or activated carbon filtration.							
Process Diagram	Contaminated Water			Pertraction Module	Utants re Form	Trated ant		Cleaned Water
Basic Flomonts	Contaminated Water Pump, P	ertraction	n Modu	le, Vacuum film Evapora	tor, Extrac	tant booster	pump	
Suitable for the removal of:	Heavy Metals Cadmium Cadmium Linc equivalents Lead Hercury Nickel Remarks: Pertraction has been chlorobenzene, pesticides and has been operated successfull efficient Removal of dissolve	R[%]	Produ	action Chemicals Methanol Glycols Corrosion Inhibitors Anti-scale Solutions Demulsifiers onomically attractive for dic hydrocarbons. A full so plant. In particular for lo rom waste water produced	R[%] * * chlorinateccale installa	Oil Di	ssolved Oil EX nzene Hs Dil Oil CB's, di- and tri- capacity of 15 m ions, this process try is proven in f	R[%] * R[%] 3/hr is very
	laboratories.	compo	inento in	ioni waste water produced	l by the on	æ gus mau	ay is proven in a	
Technical	Type of Installation					Gas 1	Gas 2	Oil 1
Details	Produced Water Volume (des	ign)						
	Area required for water treatm	nent Insta	allation					
	Mass of equipment for eater t	reatment	installa	tion				
Critical Operational Parameters	The pollutants being removed utilise recovered process fluid contamination from objection	must hat ls as extra able com	ve a stro act ant. ponent	ong affinity to the extract The independent nature o s is low.	ant used. T f the fluid	There is pote flows sugges	ntial for this proc sts that the risk of	ess to f cross
Operational Reliability	The efficiency of the process from the extract solvent. Men	will be at	ffected generat	by the reliability of the ev ion requirements are unkn	aporator un nown for O	nit which wi il & Gas app	ll remove polluta blications.	nts

Indication of										
Costs	Costs	Inv	estment Costs ((CAPEX)	Exploita	tion Costs (Ol	PEX)			
			[€]			[€/Year]				
		Present New Present				New				
	Gas Platform, small									
	Gas Platform, large									
	Oil Platform									
	Cost/kg									
	removed	Gas Platfo	orm, small	Gas Platf	orm, large	Oil	Platform			
		Existing	New	Existing	New	Existing	New			
		[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]	[€/kg]			
	Dissolved oil									
	Dispersed oil									
	Zinc equivalents <i>Remarks:</i>									
Cross Media	Air	-								
Effects	Energy	Booster pur will depend	nps and vacuum on scale up req	pumps will place a uirements as the tec	n energy demand on the high th	he system, det	letails of which			
	Added Chemicals	-	1							
	Waste	Depending of disposal.	on their nature a	and concentration, p	ollutants may either be	e recycled or c	collected for			
Other Impacts	Safety									
Impacts	Maintenance	Cleaning or equipment.	replacement of	the membrane; mai	ntenance demands ass	ociated with v	acuum			
Practical Experience		General			Offsho	re				
	S	Small scale pla	nt.		No offshore ap	plication.				
		Implemented Used Offsho	d Offshore	Practical app	licability:					
		Offshore Fie Testing	eld Trials	Driving force vield, improv	Driving force for implementation (e.g. legislation, increased					
	<u> </u>	0		Example plar	nts:	2.41.) 1				
Conclusion				as a test facil	ot industrial plant (15)	m3/Hr) which	nas been used			
Literature Source	(TNO, 2005) Sep	paration Techn	ology, Pertracti	on for Water Treatn	nent, IT-A 015e/18-02	2-2005, www.'	TNO.nl			

Table C - 23	: ION EXCHANGE							
Principle	Ion exchange is the removal of specific ions or compounds through the exchange of pre-saturated ions with target ions. It is most commonly used in produced water for the removal of salt and other inorganic chemicals such as calcium, magnesium, barium, strontium and radium if using cation exchange resins or fluoride, nitrates, fulvates, humates, arsenate, selenate and chromate if using anion exchange resins . The produced water is passed through columns containing charged resin which attracts the ions and bind with the chemicals. The resins can be designed to selectively remove a specific chemical and mixed beds may be designed to remove cations and anions. The resins require period backwashing (often with an acid) and recharging, and the ions that have been removed then require disposal in the							
	backwash water. Offshore, this would normally require transport back to shore or reinjection. It is unlikely to be suitable for removal of dispersed or dissolved oils but may remove polar organic substances and may remove specific metals, although most existing plants target Group I and II metals. Removal of heavy metals typically requires a chelating resin that forms a stable compound with the heavy metal. Backwash of chelating resins similarly requires a disposal route, and chelating resins are several times more expensive than simple ion exchange resins.							
Process Diagram	Ion exchange Raw water Deionised water Rinse Regenerant	B C Regeneration wastes	Pulse Pulse	Backwas	Back	wash		
	The Higgins contactor consists of four sections separated by valves (A-D) - a deionisation section, regeneration section, propulsion section and expansion section. The concentration of ions is reflected in the dark background. Through flow must stop while the pulse, backwash and settling stages take place.							
Basic Elements	Piping, valves, inlet pumps, backwash pumps, resin filled column.							
Suitable for the removal of:	Heavy metals Cadmium Zinc Lead Mercury Nickel	R [%] Insufficient data	Production chemi Methanol Glycols Corrosion inh Anti-scale sol Demulsifiers	i cals ibitors utions	R [%]	Oil Dissolved BTEX Benzene PAHs Dispersed Oil	R [%]	
	<i>Remarks:</i> Ion exchange can be targeted at specific heavy metals using chelating resins in commercially available systems with high efficiencies reported. There is, however, insufficient data on the application to produced water to draw reliable conclusions. The ionic removal is aimed at a specific ionic balance, and its efficiency may be sensitive to variations in produced water composition due to changes in wells being produced or new fields.							
Technical Details	Type of installation Produced water volume (design) Required area for injection vs. Water treatment installation Mass of equipment for injection vs. Water treatment installation					Gas 1 1m ³ /h Less Lower	Gas 2 6 m ³ /h Less Lower	
Critical Operational Parameters	Ion exchange is only sui remove Group II metals be applicable as a polish pre-treatment method. M backwashing.	table for low v rather than hea ing technique Iultiple column	water flows and remo avy metals. It require if there is a specific ns would normally b	oval of spe es a dispo ionic cont e required	ecific cat sal route taminant d to allow	ions or anions, an for concentrated to remove. Resin continuous oper	nd it is frequently used to backwash fluids. It could as may foul if used as a ration while	
Operational Reliability	Influent must be low in s treatment units are likely	suspended soli to require occ	ds, scale forming ma casional disinfection	aterials an	nd oxidise	ed metals to prev	ent fouling and the	

Indication of									
Costs	Costs		Investme	Investment Costs (CAPEX)			loitation Co	osts (OPEX)	
				[€]			[€ / ye	ar]	
	Gas Platform, small		na	na		Na	na		
	Gas Platform, large								
	Oil Platform								
	Cast/les nom and		Cas Distfor	m amal	Cas Dist	form longo	0);1 Dlatform	
	Cost/kg removed		Gas Plation	III, SIIIaI. Now	Existing	Now	Evisting	Now	
	Dissolved oil		na	na	na	na	na	na	
	Dispersed oil		na	na	IIa	IIa	IIa	na	
	Zinc equivalents								
	Remarks: Operational c	osts will var	y considerably	y depend	ling the quality	and quantity	of the feed v	vater, and the	
	system requires minima	energy requirements.							
	There is insufficient app	licable info	rmation to est	imate co	sts for offshore	produced wa	ter treatmen	t. However one	
	study estimated that after	r a convent	ional pretreatm	nent (e.g	., coagulation,	flocculation, a	nd sedimen	tation), ion	
	exchange treatment cost	s for surface	e water vary b	etween (€0.2 and €0.6 p	er cubic metre	at flow rate	es of 60 – 240	
	m ³ /hour. Operating cost	s were in th	e region of 70	-80% of	the total cost v	vith regeneran	ts, raw wate	r, labour and	
	maintenance making the	e most signi	ficant contribu	tions. C	helating resins	for removing	heavy metal	s are several times	
	more expensive.								
Cross media	Air	Emissions	Emissions from power generation for pumping.						
effects	Energy	Power generation to run circulation and backwashing pumps.							
	Added chemicals	Chemicals	Chemicals embedded in resin, require periodic recharging. Occasional disinfection required.						
	waste	disposal a	d water will rec	juire ren	ijection or disp	osal to shore.	Spent resin	solution requires	
Other	Safaty	Chemicals	(including ac	ids) reau	uired on site for	r regenerating	resing neut	ralising spent	
impacts	Barety	solution a	nd for disinfec	tion.	ined on site for	regenerating	resins, neut	funding spont	
mpueus	Maintenance	Occasiona	d disinfection	required	. Careful moni	toring of influ	ent to check	for fouling and	
		scale form	scale forming materials. IX is sensitive to free chlorine oxidation.						
Practical	G	eneral				Offs	hore		
experience	Ion exchange is a comm	only used to	echnology and	l		No applica	tions found		
	has a long history of use	e in water tre	eatment and						
	wastewater treatment. It	is particula	rly commonly	,					
	used as water softening	and in the r	emoval of hea	vy					
	metals from drinking wa	ater. It has s	ome use in the	•					
	to soften the water and t	ater from co	oalded methar	ie					
Conclusions	Ion exchange is an effect	tive polishi	ng technique f	or Th	ere is no infor	mation on the	application	to produced water	
Conclusions	removing dissolved salt	s in onshore	applications.	or	the offshore er	vironment, th	erefore tech	nique not currently	
	Termo (mg dissor) ed sait		uppheutonsi	av	ailable,			inque not eutrenity	
Literature	Ion Exchange Materials	- Properties	s and Applicat	ions. Au	thor(s): Andre	i A. Zagorodn	i		
source	ISBN: 978-0-08-044552	2-6				C			
	An Integrated Framewo	rk for Treat	ment and Man	agement	of Produced V	Vater, Technic	al Assessme	ent of Produced	
	Water Treatment Techn	ologies, 1 st 1	Edition, 2009,	Colorad	o School of M	ines.			
	Produced Water Manag	ement Tech	nology Descri	ptions, F	actsheet - Ion	Exchange. NE	ETL		
	Technical Assessment o	f Produced	Water Treatm	ent Tech	nologies. 1 st E	dition. RPSEA	Project 07	122-12. Colorado	
	School of Mines.	. .	a .				10.1	2011	
	REMCO Engineering Ic	on Exchange	e Systems proc	cess desc	ription, from v	vebsite review	ed October 1	2011.	

Table C - 24: OXIDATION, VERTECH								
Principle	Vertech aqueous phase oxidation system is a form of non-catalytic Wet Air Oxidation. It is consists of two concentric tubes and a heat exchange system and operates via a high-pressure oxidation reaction below ground taking advantage of hydrostatic pressure at a depth of 1200-1500m, producing dissolved and suspended oxidation products. In the only operating example in the Netherlands, residual solids are landfilled after dewatering, while residual dissolved contaminants are treated biologically. Off-gases are treated by thermal incineration with a catalytic reactor as backup.							
Process Diagram	Offgas							
Diugi uni			_					
	Influent liquid							
Basic Floments	A recirculating well approximately 1200m deep and 1m in diameter, 250 Celsius water supply, oxygen supply, heat							
Suitable for	Heavy metals R [%]	Production chemi	icals	R [%]	Oil		R [%]	
the removal of:	Cadmium I Zinc I Lead I Nickel I	 Methanol Glycols Corrosion inh Anti-scale sol Demulsifiers 	ibitors utions		Dissolved Oil Dissolved Oil BTEX Benzene PAHs Dispersed Oil R [%]		R [%]	
	Remarks: In an onshore pilot plant it is reported to be efficient at converting high organic load sludges into water, CO_2 and ash. There is no data on its effectiveness at removing organic pollutants in produced water or similar 'weak' effluents. It would not be effective at removing metals, but it may oxidise and/or break down complex chemicals							
Technical	Type of installation	0	,		Gas 1	Gas 2		
Details	Produced water volume (design)				$1 \text{ m}^3/\text{h}$		$6 \text{ m}^3/\text{h}$	
	Required area for injection vs. Water treatment installation Much smaller Much smaller Much smaller					smaller		
Critical	Requires weekly stop for descaling	of tubes with nitri	c acid. F	urther trea	tment of the ef	fluent is req	uired to remove	
Operational	residual reaction products (including	g ash). High tempe	erature n	nust be ma	intained, which	n for produc	ed water would	
Parameters	No data. Scaling is clearly a potential	or a mgn organic l	oad as f	lot plant h	as operated for	many years	. Continuous	
Reliability	operation would require multiple un	its.	P	praire ii	-r traited for			
Indication of								
Costs	Costs	Investment Costs (CAPE [€]		APEX)	EX) Expl		loitation Costs (OPEX) [€ / year]	
	Car Dlatfarra II							
	Gas Platform, small Gas Platform, large Oil Platform	No data	No dat	a	No data	No dai	a	
	Cost/kg romovod	Gas Platform small		Gas Dia	Gas Platform large		Oil Platform	
	CUSI/Kg TEHIOVEU	Existing N	New	Existing	New	Existing	New	
	Dissolved oil Dispersed oil Zinc equivalents	No data No	o data	No data	No data	No data	No data	
	Remarks: Existing wells would not be suitable for the process as currently described, requiring a 1m diameter well of 1.2km depth. To create a well of such dimensions offshore would be €10s of millions and a technical first. Superheated water and an oxygen supply would also be expensive to install and operate offshore.							

Cross media	Air	Air emissions from power generation, small amounts of CO2 from process					
effects	Energy	Energy required for continuous superheated water supply and pumping. Once operating					
		continuously, energy requirements are offset by oxidation reaction energy, but this would be					
		limited for an effluent with low organic load such as produced water.					
	Added chemicals	None					
	Waste	Ash suspended in effluent					
Other	Safety	Superheated water generator and supply					
impacts	Maintenance	Downhole problems could require major intervention					
Practical	General		Offshore				
experience	A prototype reactor	based on the Prenso wet	None				
	oxidation technology has been run in Apeldoorn,						
	the Netherlands. The reactor has been operational						
	from 1992 to 2004, and	has treated between 20,000					
	and 28,000 dry tor	nes of sludge annually.					
Conclusions	Tested on an industrial scale but not tested on		Would require significant investment to develop laboratory				
	produced water and not widely available.		scale tests, with intrinsic difficulties for offshore operation.				
			Technique not currently available.				
Literature	Wet air oxidation: past, present and future. F Luck, Anjou Recherche, Vivendi Water Research Center, 78603						
source	Maisons Laffitte, France						
	Providentia Environmental Solutions B.V. (2010) Prenso Wet Oxidation Technology Information Memorandum						
	Genesyst UK website reviewed October 2011, History and development of superheated water conversion of biomass.						

Table C - 25: Oxidation, Hydrogen Peroxide									
Principle	The Hydrogen peroxide treatment is a type of chemical oxidation. The hydrogen peroxide is dosed into the influent stream								
	the conditions of the do	sing and n	nixing such as th	e pH. react	ion time. co	oncentration an	nd temperatu	are are controlled to	
	target the pollutants that require removal								
	an for the polyanite that require removal.								
	Hydrogen peroxide can	be used ir	conjunction wi	th other typ	es of oxida	tion processes	to provide a	n advanced	
	oxidation process through	gh the fori	nation of hydrox	yl radicals	. When mix	ked with ferrou	s iron as a c	atalyst, it is known	
	as Fenton's reagent.								
Process									
Diagram									
Basic									
Elements									
Suitable for	Heavy metals	R [%]	Production cl	emicals	R [%]	Oil		R [%]	
the removal	Cadmium		Methanol			□ Dissolved	l Oil		
of:	□ Zinc		□ Glycols			\square BTEX			
	□ Lead		Corrosion inhibitors			Benzene			
	□ Mercury		Anti-scale solutions			PAHSs			
	□ N1ckel		□ Demulsifier	S		Dispersed Oil		R [%]	
						⊔ Oil			
	Remarks:								
The sheet so 1	T C' (11.)					0 1	0.0		
Deteile	Type of installation					Gas I Gas 2		h	
Details	Produced water volume (design) Im3/h 6 m3/h						1		
	Required area for injection vs. Water treatment installation								
Critical	Wass of equipment for injection vs. water treatment instantion								
Operational	ringii chennicai usage.								
Parameters									
Operational									
Reliability									
Indication of									
Costs	Costs		Investme	nt Costs (C	APEX)	Exp	oloitation Co	osts (OPEX)	
				[€]		[€ / yea		ar]	
	Gas Platform, small								
	Gas Platform, large								
	Oil Platform								
	Cost/kg removed	Cost/kg removed		Gas Platform, small		tform, large	Oil Platform		
	D: 1 1 1		Existing	New	Existing	New	Existing	New	
	Dissolved oil								
	Dispersed oil								
	Zinc equivalents	Zinc equivalents							
Contraction	Remarks:								
cross media									
effects	Energy								
	Added chemicals								
Other	vv aste Sofoty	Strong	vidicing agent	ead					
imports	Salety Strong oxidising agent used								
Drooticol									
evnerience	6	cher al				Ulls	shute		
Conclusions									
Literature									
source									
~~~~~	I								
Table C - 26:	Oxidation, Ozone Trea	atment							
-----------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------	----------------------------------------------------------------------------------------------------------	--------------------------------------------------	-----------------------------------------------	--	--	--
Principle	<ul> <li>one free oxygen atom. Ozone can react through direct oxidation or, through advanced oxidation, by the production of hydroxyl free radicals. Advanced Oxidation is the most efficient use of ozone and requires the addition of UV or H₂O₂ to produce hydroxyl free radicals and improve the rate of treatment. UV is most commonly used but H₂O₂ is used where oxidisation of the substance is particularly difficult, a combination of UV and H₂O₂ is also available.</li> <li>Ozone removes a wide variety of contaminants, has a short reaction time and does not require the addition of chemicals to the water. Ozone oxidises various metals to form metal oxides that can be removed with filtration or chemical oxidation. Ozone is generated at the point of application from electricity and either dried air or from oxygen delivered to site in liquid form.</li> <li>The reaction produces by-products, some of which may be harmless e.g. CO₂, but there is little documentation on this</li> </ul>								
	The reaction produces by-products, some of which may be harmless e.g. $CO_2$ , but there is little documentation on this aspect								
Process Diagram Basic Elements	Influent       Influent         Gas Feed       Ozone         System       Generator         Ozone generator and diffusers, ozone contactor, ozone off-gas decomposer, oxygen or air feed system, supply and discharge pumps, monitoring and control systems. When used in conjunction with UV -UV lamps, lamp sleeves, lamp								
~	cleaning system. Monitorir	ng and control system.			<b>^</b>				
Suitable for the removal of:	Heavy metals     R [%       Cadmium       Zinc       Lead       Mercury       Nickel	<ul> <li>Production chemicals</li> <li>Methanol</li> <li>Glycols</li> <li>Corrosion inhibitors</li> <li>Anti-scale solutions</li> <li>Demulsifiers</li> </ul>	R [%]	Oil           ■ Diss           ■ BTE           ■ Ben:           ■ PAF           Disperse           ■ Oil	olved Oil X zene Is e <b>d Oil</b>	R [%] 50-65% R [%] 50-65%			
	Remarks:		•						
Technical Details	Type of installation Produced water volume (de Required area for injection Mass of equipment for inje	esign) vs. Water treatment installation ection vs. water treatment installat	on	Gas 1 1 m ³ /h Similar Lower	Gas 2 6 m ³ /h Similar Lower	Oil 175 m³/h No data			
Critical Operational Parameters	The feed water may affect availability of hydroxyl rac prior to discharge. Electric	the treatment process, organic ma licals required in the treatment pro al power is required.	tter, pH, r ocess. The	netal ions and e effluent from	t carbonate ior n ozone plants	ns will all affect the may need settlement			
Operational Reliability	Ozone systems have impro and can be easily replaced	ved reliability over the past few y without interruption of flow line.	ears. The	working part	s are often ext	ernal to the flow line			

Indication of								
Costs	Costs		Investment Cos	ts (CAP	EX)	Exploitation	n Costs (OP	EX)
			[€]		,	[€ / year]		,
			Existing	New		Existing	New	
	Gas Platform, small		€400,000	No da	ita	€40,000	No da	ıta
	Gas Platform, large		€750,000			€75,000		
	Oil Platform		No data			No data		
	Cost/kg removed		Gas Platform, s	mall	nall Gas Platform,		Oil Platfo	rm
			Existing	New	Existing	New	Existing	New
	Dissolved oil		€1666 - €152		€18 - €1.6		No data	
	Dispersed oil		€714 - €66		€7.8 - €0.6			
	Zinc equivalents		n/a0		n/a			
	Remarks: Based on 200	2 prices. Pr	ice range is betwe	en the f	irst year and	subsequent y	ears. Exclud	les installation cost,
	incidental costs of maki	ng offshore	platform modific	ations, 1	naintenance	and downtim	e.	
Cross media	Air	Ozone des	struction required	prior to	venting.			
effects	Energy	Requires	23 kW for 66 m ³ /l	n unit				
	Added chemicals	None						
	Waste	None						
Other	Safety	Ozone is a	a toxic gas and is	a potent	ial fire hazar	d.		
impacts	Maintenance							
Practical	G	eneral				Off	shore	
experience	Ozone is a common typ	pe of treatm	ent that has been	Some offshore units have been trialled, and a commercial unit				
	used for many years is	the treatment	nt of clean water	is planned on the ConocoPhillips Judy platform.				
	and for polishing in	wastewater	treatment. An					
	onshore unit has been to	ialled at the	e Flotta Terminal.					
Conclusions	Process can be used	l to reduce d	lispersed and	Proce	ess can be us	ed offshore to	o reduce disp	persed and dissolved
	dissolved oil compou	nds. Presend	ce of ozone is a	oil	compounds.	Awaiting firs	t commercia	al scale installation
	safe	ety issue.			offshore. Te	chnique on th	ne verge of b	eing available.
Literature	Environmental Improve	ements in Pr	oduced Water and	l Waster	water Treatm	ent Technolo	ogy, Argo Ei	nvironmental
source	Engineering Limited.							
	Addendum to the OSPA	AR Backgro	und Document Co	oncernin	g Technique	s for the Man	agement of	
	Produced Water from C	Offshore Inst	tallations (Publica	tion nur	nber 162/200	02)		
	ConocoPhillips press re	lease via we	ebsite, reviewed C	October (	2011			



Indication of										
Costs	Costs		Investme	nt Cos	sts (C.	APEX)	Exp	ploitation Co	osts (OPEX)	
				[€]			_	[€ / ye	ar]	
			Existing		]	New Existing			New	
	Gas Platform, small		No data	Ν	No da	ta	No data	No da	ta	
	Gas Platform, large									
	Oil Platform									
	Cost/kg removed		Gas Platfor	m, sm	small Gas Platf		form, large	C	il Platform	
			Existing	Ne	ew	Existing	New	Existing	New	
	Dissolved oil		No data	No d	lata	No data	No data	No data	No data	
	Dispersed oil									
	Zinc equivalents									
	Remarks:									
	There is insufficient data	a for reliabl	e costs for off	shore p	produ	ced water tr	eatment. Cost	s for an ons	nore plant treating	
	13,800 m ³ /d were \$4mil	lion with op	perating costs	of \$46	50,000	per annum	(2006 prices)			
Cross media	Air	Emissions	Emissions from fuel use for power.							
effects	Energy	400kW fo	r a 13,800 m ³ /	d plan	nt					
	Added chemicals	None	None							
	Waste	None	None							
Other	Safety	Radiation	Radiation risks requiring shielding							
impacts	Maintenance									
Practical	G	eneral					Offs	shore		
experience	This is a fairly new use	e of irradiat	on technology. No information found.							
	Trials have been carri	ied out in th	e treatment of							
	wastewater and there is	at least one	e full scale pla	nt						
a 1 :	treating in	dustrial was	ste.			т	1		1 1 1	
Conclusions	I his treatment shows s	ome possib	ilities for futur	re		100	chnique not ci	urrently avai	lable.	
	ention and not anough	informatio	n was found to	WII D						
	make a judgement on j	ts applicabi	lity to produce	bd						
		vater	inty to produce	u						
Literature	Radiation treatment of n	olluted wat	er and wastew	ater Iı	ntern	ational Aton	nic Energy Ag	ency Sente	mber 2008 – a	
source	synthesis of many resear	rch naners	or and wastew	ator, n	morm	attonut 7 tton	the Energy rig	sency, septe	1110er 2000 u	
source	Advanced oxidation pro	cess by elec	ctron-beam-irr	adiatio	on-ind	luced decon	position of p	ollutants in i	ndustrial effluents.	
	C.L Duarte, M.H.O Sam	nna. P.R Re	la. H Oikawa.	C.G.S	lilveir	a. A.L. Azev	vedo. Institute	for Energet	ic and Nuclear	
	Research-IPEN-CNEN/	SP, Radiatio	on Technology	Cente	er-TE	, P.O. Box	11049-CEP 05	5499-970. A	vailable online 7	
	November 2001.	,	- 6.							

Table C - 28:	Oxidation. Sonolysis								
Principle	Advanced oxidation is a chemical process that produces hydroxyl radicals that can destroy a wide range of organic and inorganic compounds in water. Advanced oxidation systems can remove many pollutants from the water that are not removed by other treatment methods.								
	Sonolysis is an advanced oxidation system that uses ultrasound waves produced at low frequency and high energy. The ultrasound produces bubbles within the water (acoustic cavitations), the collapse of the bubble causes localised supercritical conditions which in turn produce the hydrogen radicals. As in other forms of advanced oxidation the hydrogen radicals break down the pollutants.								
	Sonolysis may be used in combination with other types of oxidation processes to improve treatment and removed pollutants that it is unable to remove alone.								
	INSUFFICIENT DATA TO FORM ANALYSIS								
Process Diagram	$ \begin{array}{c} 1 \\ 3 \\ 4 \\ 7 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$								
Basic	1: O ₃ /O ₂ inlet; 2: Coarse fritted-glass diffuser; 3: Thermometer; 4: Transducer; 5: Sample out; 6: Vent gas; 7: Cooling								
Elements	water jacket; 8: Reactor; 9: Magnetic agitator								
Suitable for the removal of:	Heavy metals Cadmium       R [%]       Production chemicals       R [%]       Oil       R [%]         Cadmium       Image: Methanol       Image: Dissolved Oil       Image: Dissolved Oil								
	Remarks:								
Technical Details	Type of installationGas 1Gas 2Produced water volume (design)1m3/h6 m3/hRequired area for injection vs. Water treatment installation6								
Critical Operational Parameters									
Operational Reliability									

Indication of									
Costs	Costs		Investme	nt Costs (C	CAPEX)	Exploitation Costs (OPEX)			
				[€]	,		[€ / yea	ur]	
	Gas Platform, small								
	Gas Platform, large								
	Oil Platform								
	Cost/kg removed		Gas Platfor	m, small	Gas Platfo	orm, large	0	il Platform	
			Existing	New	Existing	New	Existing	New	
	Dissolved oil								
	Dispersed oil								
	Zinc equivalents								
~	Remarks:								
Cross media	Air								
effects	Energy								
	Added chemicals								
04	Waste								
Other	Safety								
Dupation	Maintenance					0.66			
Practical	Ultracound waves have	eneral	a in wastewat			UII	snore		
experience	sewage systems but as n	robes are of	se in wastewat	er					
	nowerful it is hoped that	the technol	logy will have	9					
	wider range of uses		logy will have	a					
	while range of uses.								
Conclusions									
Literature	Chemical Oxidation Ap	plications for	or Industrial W	astewaters	By Olcay Tu	inay, Isik Ka	bdasli, Idil A	rslan-alaton,	
source	Tugba Olmez-hanci					•		·	
	Journal of Zhejiang Uni	versity Scie	nce. Ozonatio	n with ultra	asonic enhanc	ement of p-1	nitrophenol w	astewater. Xian-	
	wen Xu, [†] Hui-xiang Shi	, and Da-hu	i Wang. Depa	rtment of E	Environmental	Science and	l Engineering	, Zhejiang	
	University. Received Oc	tober 15, 2	004; Accepted	January 2	7,2005				

Table C - 29	: Oxidation, KMnO4									
Principle	Potassium permanganat	e is a strong	oxidant that d	loes not ge	nerate toxic	by-products I	t will oxidis	e a wide range of		
Timespie	organic and inorganic su	ibstances. It	t is supplied in	drv format	and mixed	into a solution	on-site.	e a whee fullge of		
	organie and morganie of		i is supplied in	urj roma						
	Potassium permanganat	e is regulary	v used in the w	ater treatm	ent industry	to removed ir	on and hvdr	ogen sulphide.		
		8 ,	,		,		··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	- 8		
Process										
Diagram										
Basic	Storage tanks, mixing ta	nks, control	ls, metering pu	ımps,						
Elements				_						
Suitable for	Heavy metals	<b>R [%]</b>	Production cl	nemicals	R [%]	Oil		R [%]		
the removal	Cadmium		Methanol			□ Dissolved	l Oil			
of:	□ Zinc □ Glycols □ BTEX									
	Lead Corrosion inhibitors Benzene									
	□ Mercury		Anti-scale s	olutions		$\Box$ PAHSs				
	□ N1ckel		Demulsifier	S		Dispersed (	Dil	R [%]		
	Kemarks:									
<b>T</b> 1 1	Type of installation Cos 1 Cos 2									
Details	Type of installationGas 1Gas 2Bredward water volume (design) $1m^2/h$ $6m^2/h$						h			
Details	Required area for inject	(uesign)	er treatment in	stallation		11113/11	0 1113/1	1		
	Mass of equipment for injection vs. Water treatment installation									
Critical	inuss of equipment for i	njeenon vo.	Water treating	in mound	ion					
Operational										
Parameters										
Operational										
Reliability										
Indication of										
Costs	Costs         Investment Costs (CAPEX)         Exploitation Costs (OPEX)									
			[€]				[€ / ye	ar]		
	Gas Platform, small									
	Gas Platform, large									
	Oil Platform									
	Cost/lig normariad		Cas Distfor	m small	Cas Dla	tform largo	0	);] Dlatform		
	Cost/kg removed		Gas Plation	III, SIIIAII Now	Gas Pla	Now	Evisting	Now		
	Dissolved oil		Existing	INEW	Existing	INEW	Existing	INEW		
	Dispersed oil									
	Zinc equivalents									
	Remarks:		1		1	1	1	1		
Cross media	Air									
effects	Energy									
	Added chemicals									
	Waste									
Other	Safety	Potassium	permanganate	e should be	handled wi	th care, it is a s	skin and inh	alation irritant, can		
impacts		cause serie	ous eye injurie	s and may	cause death	if swallowed.	Full PPE m	ust be used when		
		handling.	Risk of violen	t reaction w	ith some cl	nemicals.				
	Maintenance									
Practical	G	eneral				Offs	shore			
experience										
Conclusions		1		1	1 11 1000					
Literature	EPA guidance manual, a	atternative d	iisinfectants ar	ia oxidants	. April 1999	۶.				
source										



Indication of																
Costs	Costs		Investme	nt Costs (0	CAPEX)	Ext	loitation Co	osts (OPEX)								
				[€]	,		[€ / yea	ar]								
	Gas Platform, small															
	Gas Platform, large															
	Oil Platform															
	Cost/kg removed		Gas Platfor	m. small	Gas Plat	form. large	0	il Platform								
			Existing	New	Existing	New	Existing	New								
	Dissolved oil		0		6		6									
	Dispersed oil															
	Zinc equivalents															
	Remarks:															
	Insufficient data to estimate costs for produced water.															
Cross media	Air	Emissions	from fuel use	for power												
effects	Energy	16 kW per	m ³ /day in exi	sting trials												
	Added chemicals	Catalyst (r	ecovered and	reused)												
	Waste	Spent cata	lyst													
Other	Safety	Safety UV generation within closed vessel														
impacts	Maintenance															
Practical	G	eneral				Offs	shore									
experience	Existing plants have small footprint and zero waste. Photoelectrocatalysis has been trialled on produced water. No															
	evidence of testing in offshore environment.															
Conclusions	Photocatalytic oxidation	n has most u	se in wastewa	ter		Not curren	tly available									
	treatment plants (rather	treatment plants (rather than produced water). It is														
	still in its early stages	of develop	pment but sm	all												
	scale units are in op	eration and	the system	is												
	currently commercially	available	for a variety	of												
	wastewater types. The	re have bee	en a number	of												
	studies looking at optim	using the pr	ocess and it m	ay												
<b>T</b> • <i>i</i> · · ·	become a good, low cos	t, zero wast	e technology.													
Literature	MUTAGENICITY ASS	ESSMENT	OF PRODUC	ED WAT	ER DURING	PHOTOELE	CIROCAL	ALYTIC								
source	DEGRADATION. GUI	YING LI, I	AICHENG A	N, XIANC	PING NIE,C	JUOYING SF	IENG, XIAF	NGYING Currenter e Korr								
	Laboratory of Environmen	tal Protection	and Resources	ENO State	Rey Laborato	ry of Organic C	seochennistry,	Guanguong Key								
	Guangzhou Institute of Ge	ochemistry. C	hinese Academ	v of Science	es. Guangzhou	510640. China	. Institute of I	Hvdrobiology, Ji'nan								
	University, Guangzhou 510	0632, China.	School of Envir	onmental ar	d Chemical Er	ngineering, Sha	nghai Univers	sity, Shanghai 200072,								
	China (Received 29 May	2006; Acce	epted 26 Septe	mber 2006	<u>5</u> )											
	Global NEST Journal, V	/ol 10, No 3	, pp 376-385,	2008. USI	E OF SELEC	TED ADVAN	ICED OXID	DATION								
	PROCESSES (AOPs) F	OR WASTI	EWATER TR	EATMEN	Γ – A MINI I	REVIEW. A.S	5. STASINA	KIS* Water and								
	Air Quality Laboratory,	Department	t of Environm	ent. Unive	rsity of the A	egean, Unive	rsity Hill, M	ytilene 81100,								
	Greece															
		. 10	. 1 . 2011													
	Catalysystems website,	reviewed O	ctober 2011.													
	Pacant davalonments in	nhotocatala	tic water treat	mont tooh	ology: A rea	$r_{1000}$ (2010) N	long Non Ch	ong Bolina								
	Christopher W K Chox	v Chris Sai	nt water treat	ment tech	lology. A lev	/lew (2010) w		iolig, bo filla,								
		w, Chills Sall														
	Photoelectrocatalytic de	contaminati	on of oilfield	produced y	vastewater co	ontaining refra	actory organi	ic pollutants in the								
	presence of high concer	tration of ch	loride ions (2	006) Guiv	ing Li. Taich	eng An. Jiaxi	1 Chen. Guo	ving Sheng, Jiamo								
	Fu, Fanzhong Chen, Sha	anging Zhan	ig, Huijun Zha	0	<i>с</i> , -ши	<i>o</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	, , , , , , , , , , , , , , , , , , , ,								
	Benotti, M.J., Stanford,	B.D., Wert,	E.C., Snyder,	S.A., 200	9. Evaluation	of a photocat	alytic reacto	or membrane pilot								
	system of pharmaceutic	als and endo	ocrine disrupti	ng compou	inds from wa	ter. Water Re	s. 43, 1513e	1522.								

Table C - 31	: Oxidation, Plasma								
Principle	Advanced oxidation is a and inorganic compound not removed by other tre	chemical ls in wate eatment m	process that produces hydrox r. Advanced oxidation system nethods.	xyl radica 1s can ren	Is that can destroy nove many pollutar	a wide 1 nts from	ange of organic the water that are		
	Plasma oxidation is rela electron beam can all be indirect method of Plasm	ted to a nu regarded na treatme	umber of the oxidation technic of plasma treatment with ozo ent.	ques desc one being	ribed separately in remote and UV an	this rep d electro	ort. Ozone, UV and on beam being an		
	Plasma treatment may also be direct through an electrical discharge to water and plasma injection - a discharge above the water. Direct plasma treatment could form the basis of a treatment technology separate to ozone, UV and electron beam, but there is insufficient data to complete an analysis at this time.								
Process									
Diagram									
Basic									
Elements				<b>_</b>					
Suitable for	Heavy metals	R [%]	Production chemicals	R [%]	Oil		R [%]		
the removal	Cadmium		☐ Methanol		Dissolved Oil	-			
01:	$\Box$ L and		Glycols						
	□ Leau		Corrosion inhibitors     Anti-scale solutions		D PAHSs				
	□ Nickel		Demulsifiers		Dispersed Oil		<b>P</b> [%]		
					□ Oil		K [ /0]		
	Remarks:								
Technical	Type of installation				Gas 1	Gas 2			
Details	Produced water volume	(design)			1m3/h	6 m3/ł	1		
	Required area for injecti	on vs. Wa	ater treatment installation						
	Mass of equipment for i	njection v	s. Water treatment installation	n					
Critical									
Operational									
Parameters									
<b>Operational</b>									
Kellability									

Indication of									
Costs	Costs		Investme	nt Costs (	CAPEX)	Exploita	tion Costs (C	OPEX)	
				[€]		[€ / year]			
	Gas Platform, small								
	Gas Platform, large								
	Oil Platform								
					-				
	Cost/kg removed		Gas Platfor	m, small	Gas Platf	orm, large	Oil Pla	tform	
			Existing	New	Existing	New	Existing	New	
	Dissolved oil								
	Dispersed oil								
	Zinc equivalents								
	Remarks:								
Cross media	Air								
effects	Energy								
	Added chemicals								
	Waste								
Other	Safety								
impacts	Maintenance								
Practical	G	eneral				Offshore	Offshore		
experience									
Conclusions									
Literature									
source									

## 2. References

- 1 Stand der Techniek Offshore Productiewater Olie- en Gaswinningsindustrie (Best Available Techniques Produced Water Oil and Gas Industry), CIW VI subwerkgroep SdT Offshore productiewater, 14 January 2002
- 2 Environmental aspects of on and off-site injection of drill cuttings and produced water, OSPAR 2001, ISBN 0 946956 69 3
- 3 Removal of hydrocarbons from produced water, OIC 01/8/Info.3, Oslo, 13-16 February 2001
- 4 Twister A supersonic separator for the de-hydration of gas, OIC 01/8/Info.6, Oslo 13-16 February 2001
- 5 Background document on aromatic substances including PAH in produced water, OIC 01/8/8, Oslo, 13-16 February 2001

# Annex 1: Basis for figures in fact sheets

## 1. Model situations

Three model situations were established, i.e.:

- 1. small gas installation (based on 26 gas installations with small produced water discharges);
- 2. large gas installations (based on 27 gas installations with larger produced water discharges);
- 3. oil installations (based on 7 oil installations).

For each model situation, representative produced water quality and quantity figures were established. For water quality figures, the mediane and the 90 percentile values were established for each component, whereas the average design flow was used as point of departure for quantity values. For establishment of cost figures, new and existing offshore installations were distinguished.

The following points of departure were established on the basis of a considerable amount of data. It is noted that these data may not be representative for the all produced water discharges from all types of installations in the OSPAR area; the model situations were established on the basis of a limited amount of installations in a limited area. Other model situations may need to be defined when modifications of this background document are considered.

Model situation	Average volume m ³ /h	Design volume m ³ /h
Gas platform, small	0,2	1
Gas platform, large	1,4	6
Oil platform	150	175

#### Concentrations and loads for gas platform, small

		concentrations	8		load per ye	ear
		median	90-percentile		median	90-percentile
Volume*	m ³ /u	0,2	n.a.			
Benzene	mg/l	45	250	kg/year	79	438
BTEX	mg/l	50	300	kg/year	88	526
Cadmium	mg/l	0,0025	0,250	kg/year	0,004	0,44
Mercury	mg/l	0,0011	0,004	kg/year	0,002	0,007
Lead	mg/l	0,025	2,2	kg/year	0,04	4
Nickel	mg/l	0,040	0,080	kg/year	0,07	0,14
Zinc	mg/l	1,3	90	kg/year	2	158
Aliphatic HC's	mg/l	30	40	kg/year	53	70

* average volume in 1998

#### Concentrations and loads for gas platform, large

		concentration	concentrations		load per ye	ar
		median	90-percentile		median	90-percentile
Volume*	m ³ /	1,4	n.a.			
Benzene	mg/l	110	520	kg/year	1 350	6 375
BTEX	mg/l	130	550	kg/year	1 600	6 745
Cadmium	mg/l	0,0025	200	kg/year	0,030	2,45
Mercury	mg/l	0,0011	6	kg/year	0,013	0,074
Lead	mg/l	0,03	9	kg/year	0,4	110
Nickel	mg/l	0,030	60	kg/year	0,37	0,74
Zinc	mg/l	2	60	kg/year	25	735
Aliphatic HC's	mg/l	30	40	kg/year	370	490

* average volume in 1998

		concentrations			load per year	
		median	90-percentile		median	90-percentile
Volume	m ³ /	150	n.a.			
Benzene	mg/l	1,5	1,9	kg/year	1 970	2 500
BTEX	mg/l	2,5	3	kg/year	3 285	3 940
Cadmium	mg/l	0,0004	0,0006	kg/year	0,53	0,72
Mercury	mg/l	0,00003*	-	kg/year	0,039	-
Lead	mg/l	0,01*	0,025	kg/year	13,1	33
Nickel	mg/l	0,005*	-	kg/year	6,6	-
Zinc	mg/l	0,02*	0,1	kg/year	26,3	131
Aliphatic HC's	mg/l	25	40	kg/year	32 850	52 560

#### Concentrations and loads for oil platforms

* = value established by judgement, below detection limit

The concentrations referred to in the column 'median' have been used for the model situations.

## 2. Cost figures

For each possible measure, model situations were established (where possible / relevant), including cost figures. Capital expenses (CAPEX) and operational expenses (OPEX) were estimated on the basis of market conformity (price level 2000). Estimates were based on price indications from suppliers, designers and fitters. Furthermore, use was made of data from information and experiences in the industry and other parties involved in offshore oil and gas activities.

## CAPEX

Investment estimates for each technique is based on the following costs:

- design and project management;
- equipment;
- transport;
- fitting; and
- unforeseen.

Design and project management costs are dependent on the complexity of the installations, but were estimated to be 10% of the total investments.

For each technique, the treatment system will be formed of specific equipment and other equipment, necessary for proper functioning of the apparatus. These may be buffer tanks and pumps. Prices were based on information from more than one supplier where possible.

Transport costs are important when the technique is installed on existing offshore installations. For new installations, transport costs were assumed 0.

Fitting activities are dependent on the complexity of the installation, and will differ per technique and per situation (existing or new platform, etc.).

Use of space on offshore installations involves costs. For two exemplary situations, investment for use of space on a new platform was calculated.

Part of the investment costs cannot be estimated. Therefore, unforeseen costs have been incorporated in the calculations. On existing offshore installations, more unforeseen circumstances may be expected, therefore these costs may be higher than on new installations. For existing offshore installations unforeseen costs were estimated to be 15% of the total costs, for new installations these are estimated to be 10%.

Capital expenses of investments were calculated on the basis of the annuity method, taking account of the following situations:

		New platform	Existing platform
Depreciation period	[years]	10	5
Interest rate	[%]	10	10
Annuity	[% of total investment]	16,3	26,4

Total investment costs are the sum of design and project management costs, equipment, transport, fitting and unforeseen costs. The calculations above are based on the assumption that no rest value will remain. Re-use of parts is limited, rest value will usually be the scrap value and is assumed zero.

#### **OPEX**

All costs were based on the price level of the reference year 2000 (the Netherlands). For future estimates, price escalations of approximately 3% per year should be taken into account. Points of departure for calculation of yearly operational costs are presented in the table below. For each technique and model situation, yearly operational expenses were calculated (where possible).

	New offshore installation	Existing offshore installation
depreciation	0,163 x I	0,264 x I
maintenance	$\epsilon/m^3$ (i.s./e.f.) x Q	$\oint/m^3$ (i.s./e.f.) x Q
spare parts	$\epsilon/m^3$ (i.s./e.f.) x Q	$\oint/m^3$ (i.s./e.f.) x Q
use of chemicals	€/kg x kg/m ³ (i.s.) x Q	€/kg x kg/m ³ (i.s.) x Q
use of potable water	$ \in$ 3,40 /m ³ x amount m ³ /year (i.s.)	$\notin$ 3,40/m ³ x amount m ³ /year (i.s.)
other regular uses	i.s.	i.s.
operation (crew)	€ 32,/uur x amount hours/year (e.f.)	€ 32,/hour x amount hours/year (e.f.)
energy	€ 0,14/kWh x kWh/year (i.s.)	€ 0,14/kWh x kWh/year (i.s.)
Removal of sludge <ul> <li>regular quantity</li> </ul>	€ 365,/ton x 1 000 kg/ton x amount kg sludge/m ³ (e.f.) x Q;	€ 365,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q;
<ul> <li>small quantity (&lt; 3 500 kg/year)</li> </ul>	€ 680,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q;	€ 680,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q;
Mercury containing sludge	€ 1 140,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q	€ 1 140,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q
Radioactive waste		€ 15 000,/ton x 1 000 kg/ton x amount kg/m ³ (e.f.) x Q

I : total investment costs in Euro (CAPEX);

- Q : yearly treatment flow in  $m^3$ /year;
- i.s. : information supplier;
- e.f. : best estimate by authors fact sheet.

Usually, yearly OPEX will amount approximately 35 – 45% of the CAPEX (I).



Victoria House 37-63 Southampton Row London WC1B 4DA United Kingdom t: +44 (0)20 7430 5200 f: +44 (0)20 7242 3737 e: secretariat@ospar.org www.ospar.org

OSPAR's vision is of a clean, healthy and biologically diverse North-East Atlantic used sustainably

ISBN: 978-1-909159-35-8 Publication Number: 602/2013

© OSPAR Commission, 2013. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated.

© Commission OSPAR, 2013. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l'Editeur, sous réserve que l'origine de l'extrait soit clairement mentionnée.